Skip to main content
Log in

Hyperelastic models for rubber-like materials: consistent tangent operators and suitability for Treloar’s data

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Rubber-like materials consist of chain-like macromolecules that are more or less closely connected to each other via entanglements or cross-links. As an idealisation, this particular structure can be described as a completely random three-dimensional network. To capture the elastic and nearly incompressible mechanical behaviour of this material class, numerous phenomenological and micro-mechanically motivated models have been proposed in the literature. This contribution reviews fourteen selected representatives of these models, derives analytical stress–stretch relations for certain homogeneous deformation modes and summarises the details required for stress tensors and consistent tangent operators. The latter, although prevalently missing in the literature, are indispensable ingredients in utilising any kind of constitutive model for the numerical solution of boundary value problems by iterative approaches like the Newton–Raphson scheme. Furthermore, performance and validity of the models with regard to the classical experimental data on vulcanised rubber published by Treloar (Trans Faraday Soc 40:59–70, 1944) are evaluated. These data are here considered as a prototype or worst-case scenario of highly nonlinear elastic behaviour, although inelastic characteristics are clearly observable but have been tacitly ignored by many other authors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Treloar L.R.G.: Stress-strain data for vulcanised rubber under various types of deformation. Trans. Faraday Soc. 40, 59–70 (1944)

    Article  Google Scholar 

  2. Arruda E.M., Boyce M.C.: A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids 41, 389–412 (1993)

    Article  Google Scholar 

  3. Boyce M.C., Arruda E.M.: Constitutive models of rubber elasticity: a review. Rubber Chem. Technol. 73, 504–523 (2000)

    Article  Google Scholar 

  4. Lulei, F.: Mikromechanisch motivierte Modelle zur Beschreibung finiter Deformationen gummiartiger Polymere: Physikalische Modellbildung und numerische Simulation. Ph.D. Thesis, University of Stuttgart, Germany (2002)

  5. Miehe C., Göktepe S., Lulei F.: A micro-approach to rubber-like materials - Part I: The non-affine micro-sphere model of rubber elasticity. J. Mech. Phys. Solids 52, 2617–2660 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Göktepe, S.: Micro-macro approaches to rubbery and glassy polymers: predictive micromechanically-based models and simulations. Ph.D. Thesis, University of Stuttgart, Germany (2007)

  7. Ogden R.W.: Large deformation isotropic elasticity—on the correlation of theory and experiment for incompressible rubberlike solids. Proc. R. Soc. Lond. A Math. Phys. Sci. 326, 565–584 (1972)

    Article  MATH  Google Scholar 

  8. Mooney M.: A theory of large elastic deformation. J. Appl. Phys. 11, 582–596 (1940)

    Article  MATH  Google Scholar 

  9. Rivlin R.S.: Large elastic deformations of isotropic materials. IV. Further developments of the general theory. Philos. Trans. R. Soc. A 241, 379–397 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  10. Rivlin R.S.: Large elastic deformations of isotropic materials. V. The problem of flexure. Proc. R. Soc. Lond. A Math. Phys. Sci. 195, 463–473 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  11. Rivlin R.S.: Large elastic deformations of isotropic materials. VI. Further results in the theory of torsion, shear and flexure. Philos. Trans. R. Soc. A 242, 173–195 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  12. Yeoh O.H.: Some forms of the strain energy function for rubber. Rubber Chem. Technol. 66, 754–771 (1993)

    Article  Google Scholar 

  13. Yeoh O.H., Fleming P.D.: A new attempt to reconcile the statistical and phenomenological theories of rubber elasticity. J. Polym. Sci. Polym. Phys. 35, 1919–1931 (1997)

    Article  Google Scholar 

  14. Wu P.D., van der Giessen E.: On improved 3-D non-Gaussian network models for rubber elasticity. Mech. Res. Commun. 19, 427–433 (1992)

    Article  Google Scholar 

  15. Beda T., Chevalier Y.: Hybrid continuum model for large elastic deformation of rubber. J. Appl. Phys. 94, 2701–2706 (2003)

    Article  Google Scholar 

  16. Marckmann G., Verron E.: Comparison of hyperelastic models for rubber-like materials. Rubber Chem. Technol. 79, 835–858 (2006)

    Article  Google Scholar 

  17. Kaliske M., Heinrich G.: An extended tube-model for rubber elasticity: Statistical mechanical theory and finite element implementation. Rubber Chem. Technol. 72, 602–632 (1999)

    Article  Google Scholar 

  18. Shariff M.H.B.M.: Strain energy function for filled and unfilled rubber-like material. Rubber Chem. Technol. 73, 1–18 (2000)

    Article  Google Scholar 

  19. Bergström J.S., Boyce M.C.: Constitutive modeling of the large strain time-dependent behavior of elastomers. J. Mech. Phys. Solids 46, 931–954 (1998)

    Article  MATH  Google Scholar 

  20. Seibert D.J., Schöche N.: Direct comparison of some recent rubber elasticity models. Rubber Chem. Technol. 73, 366–384 (2000)

    Article  Google Scholar 

  21. Rivlin R.S., Saunders D.W.: Large elastic deformations of isotropic materials. VII. Experiments on the deformation of rubber. Philos. Trans. R. Soc. A 243, 251–288 (1951)

    Article  MATH  Google Scholar 

  22. Hartmann S.: Parameter estimation of hyperelasticity relations of generalized polynomial-type with constraint conditions. Int. J. Solids Struct. 38, 7999–8018 (2001)

    Article  MATH  Google Scholar 

  23. Hartmann S., Neff P.: Polyconvexity of generalized polynomial-type hyperelastic strain energy functions for near-incompressibility. Int. J. Solids Struct. 40, 2767–2791 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hartmann S.: Numerical studies on the identification of the material parameters of Rivlin’s hyperelasticity using tension-torsion tests. Acta Mech. 148, 129–155 (2001)

    Article  MATH  Google Scholar 

  25. Hartmann S., Tschöpe T., Schreiber L., Haupt P.: Finite deformations of a carbon black-filled rubber. Experiment, optical measurement and material parameter identification using finite elements. Eur. J. Mech. A-Solid 22, 309–324 (2003)

    Article  MATH  Google Scholar 

  26. Haupt P., Sedlan K.: Viscoplasticity of elastomeric materials: experimental facts and constitutive modelling. Arch. Appl. Mech. 71, 89–109 (2001)

    Article  MATH  Google Scholar 

  27. Attard M.M., Hunt G.W.: Hyperelastic constitutive modeling under finite strain. Int. J. Solids Struct. 41, 5327–5350 (2004)

    Article  MATH  Google Scholar 

  28. Valanis K.S., Landel R.F.: The strain-energy function of a hyperelastic material in terms of the extension ratios. J. Appl. Phys. 7, 2997–3002 (1967)

    Article  Google Scholar 

  29. Vangerko H., Treloar L.R.G.: The inflation and extension of rubber tube for biaxial strain studies. J. Phys. D Appl. Phys. 11, 1969–1978 (1978)

    Article  Google Scholar 

  30. Chagnon G., Marckmann G., Verron E.: A comparison of the Hart-Smith model with Arruda–Boyce and Gent formulations for rubber elasticity. Rubber Chem. Technol. 77, 724–735 (2004)

    Article  Google Scholar 

  31. Hart-Smith L.J.: Elasticity parameters for finite deformations of rubber like materials. Z. Angew. Math. Phys. 17, 608–626 (1966)

    Article  Google Scholar 

  32. Gent A.N.: A new constitutive relation for rubber. Rubber Chem. Technol. 69, 59–61 (1996)

    Article  MathSciNet  Google Scholar 

  33. Boyce M.C.: Direct comparison of the Gent and Arruda–Boyce constitutive models of rubber elasticity. Rubber Chem. Technol. 69, 781–785 (1996)

    Article  Google Scholar 

  34. Horgan C.O., Saccomandi G.: Simple torsion of isotropic, hyperelastic, incompressible materials with limiting chain extensibility. J. Elast. 56, 159–170 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  35. Horgan C.O., Saccomandi G.: A molecular-statistical basis for the Gent constitutive model of rubber elasticity. J. Elast. 68, 167–176 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  36. Currie P.K.: Comparison of incompressible elastic strain energy functions over the attainable region of invariant space. Math. Mech. Solids 10, 559–574 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  37. Haines D.W., Wilson W.D.: Strain-energy density function for rubberlike materials. J. Mech. Phys. Solids 27, 345–360 (1979)

    Article  MATH  Google Scholar 

  38. Holzapfel G.A.: Nonlinear Solid Mechanics. Wiley, Chichester (2001)

    Google Scholar 

  39. Miehe C.: Aspects of the formulation and finite element implementation of large strain isotropic elasticity. Int. J. Numer. Methods Eng. 37, 1981–2004 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  40. Liu C.H., Hofstetter G., Mang H.A.: 3D finite element analysis of rubber-like materials at finite strains. Eng. Comput. 11, 111–128 (1994)

    Google Scholar 

  41. Kaliske M., Rothert H.: On the finite element implementation of rubber-like materials at finite strains. Eng. Comput. 14, 216–232 (1997)

    Article  Google Scholar 

  42. Heinrich G., Kaliske M.: Theoretical and numerical formulation of molecular based constitutive tube-model of rubber elasticity. Comput. Theor. Polym. Sci. 7, 227–241 (1997)

    Article  Google Scholar 

  43. Isihara A., Hashitsume N., Tatibana M.: Statistical theory of rubber-like elasticity. IV. (Two-dimensional stretching). J. Chem. Phys. 19, 1508–1512 (1951)

    Article  MathSciNet  Google Scholar 

  44. Gent A.N., Thomas A.G.: Forms for the stored (strain) energy function for vulcanized rubber. J. Polym. Sci. 28, 625–628 (1958)

    Article  Google Scholar 

  45. Swanson S.R.: A constitutive model for high elongation elastic materials. J. Eng. Mater. Trans. ASME 107, 110–115 (1985)

    Article  Google Scholar 

  46. Yeoh O.H.: Characterization of elastic properties of carbon-black-filled rubber vulcanizates. Rubber Chem. Technol. 63, 792–805 (1990)

    Article  Google Scholar 

  47. Carroll M.M.: A strain energy function for vulcanized rubbers. J. Elast. 103, 173–187 (2011)

    Article  MATH  Google Scholar 

  48. James H.M., Guth E.: Theory of the elastic properties of rubber. J. Chem. Phys. 11, 455–481 (1943)

    Article  Google Scholar 

  49. Wang M.C., Guth E.: Statistical theory of networks of non-Gaussian flexible chains. J. Chem. Phys. 20, 1144–1157 (1952)

    Article  MathSciNet  Google Scholar 

  50. Flory P.J.: Thermodynamic relations for high elastic materials. Trans. Faraday Soc. 57, 829–838 (1961)

    Article  MathSciNet  Google Scholar 

  51. Wriggers P.: Nonlinear Finite Element Methods. Springer, Berlin (2008)

    MATH  Google Scholar 

  52. Treloar L.R.G.: The Physics of Rubber Elasticity. Clarendon Press, Oxford (1975)

    Google Scholar 

  53. Ogden R.W.: Non-linear Elastic Deformations. Dover, New York (1997)

    Google Scholar 

  54. Miehe C.: Computation of isotropic tensor functions. Commun. Numer. Methods Eng. 9, 889–896 (1993)

    Article  MATH  Google Scholar 

  55. Reese S., Govindjee S.: A theory of finite viscoelasticity and numerical aspects. Int. J. Solids Struct. 35, 3455–3482 (1998)

    Article  MATH  Google Scholar 

  56. Simo J.C., Taylor R.L.: Quasi-incompressible finite elasticity in principal stretches. Continuum basis and numerical algorithms. Comput. Methods Appl. Mech. Eng. 85, 273–310 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  57. Başar Y., Weichert D.: Nonlinear Continuum Mechanics of Solids. Fundamental Mathematical and Physical Concepts. Springer, Berlin (2000)

    MATH  Google Scholar 

  58. Bonet J., Wood R.D.: Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  59. Böl, M.: Numerische Simulation von Polymernetzwerken mit Hilfe der Finite-Elemente-Methode. Ph.D. thesis, Ruhr-University Bochum, Germany (2005)

  60. Thomas A.G.: The departures from the statistical theory of rubber elasticity. Trans. Faraday Soc. 51, 569–582 (1955)

    Article  Google Scholar 

  61. Swanson S.R., Christensen L.W., Ensign M.: Large deformation finite element calculations for slightly compressible hyperelastic materials. Comput. Struct. 21, 81–88 (1985)

    Article  Google Scholar 

  62. Biderman V.L.: Calculation of Rubber Parts (in Russian). Rascheti na Prochnost, Moscow (1958)

    Google Scholar 

  63. Kratky O., Porod G.: Röntgenuntersuchung gelöster Fadenmoleküle. Recl. Trav. Chim. Pay-B 68, 1106–1122 (1949)

    Article  Google Scholar 

  64. Cohen A.: A Padé approximant to the inverse Langevin function. Rheol. Acta 30, 270–273 (1991)

    Article  Google Scholar 

  65. Kuhn W.: Über die Gestalt fadenförmiger Moleküle in Lösungen. Kolloid Z. 68, 2–15 (1942)

    Google Scholar 

  66. Miehe C., Göktepe S.: . J. Mech. Phys. Solids 53, 2231–2258 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  67. Bažant Z.P., Oh B.H.: Efficient numerical integration on the surface of a sphere. Z. Angew. Math. Mech. 66, 37–49 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  68. Nah C., Lee G.B., Lim J.Y., SenGupta R., Gent A.N.: Problems in determining the elastic strain energy function for rubber. Int. J. Non-Linear Mech. 45, 232–235 (2010)

    Article  Google Scholar 

  69. Fossum A.F.: Parameter estimation for an internal variable model using nonlinear optimization and analytical/numerical response sensitivities. J. Eng. Mater. Trans. ASME 119, 337–345 (1997)

    Article  Google Scholar 

  70. Ekh M.: Thermo-elastic-viscoplastic modeling of IN792. J. Mech. Behav. Mater. 12, 359–387 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Steinmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steinmann, P., Hossain, M. & Possart, G. Hyperelastic models for rubber-like materials: consistent tangent operators and suitability for Treloar’s data. Arch Appl Mech 82, 1183–1217 (2012). https://doi.org/10.1007/s00419-012-0610-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-012-0610-z

Keywords

Navigation