Skip to main content
Log in

A maximum-dissipation principle in generalized plasticity

  • Contributed Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

It is shown that in large-deformation generalized plasticity a local maximum-dissipation postulate is equivalent to the condition that the plastic strain rate (in the sense of Rice) cannot oppose the total strain rate, when strain space is regarded as a Riemannian manifold with the instantaneous Lagrangian tangent elastic stiffness as the metric tensor. From this condition, normality conditions in strain space (in this sense) and in the space of the second Piola-Kirchhoff stress (in the usual sense) are derived. With the additive decomposition of strain, the loading surface has essentially the same properties as in infinitesimal-strain plasticity. For the multiplicative decomposition, approximate normality rules are derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mandel, J.: Contribution théorique à l'étude de l'écrouissage et des lois de l'écoulement plastique. Proc. 11th Int. Congr. Appl. Mech., pp. 502–509 (1964).

  2. von Mises, R.: Mechanik der plastischen Formänderung von Kristallen. Z. angew. Math. Mech.8, 161–185 (1928).

    Google Scholar 

  3. Hill, R.: A variational principle of maximum plastic work in classical plasticity. Quart. J. Mech. Appl. Math.1, 18–28 (1948).

    Google Scholar 

  4. Hill, R.: The mathematical theory of plasticity. Oxford University Press 1956.

  5. Mandel, J.: Plasticité classique et viscoplasticité (Udine 1971). Wien-New York: Springer 1972.

    Google Scholar 

  6. Prager, W.: Introduction to plasticity. Addison-Wesley 1959.

  7. Taylor, G. I.: A connection between the criterion of yield and the strain-ratio relationship in plastic solids. Proc. Roy. Soc.A191, 441–446 (1947).

    Google Scholar 

  8. Koiter, W.: Stress-strain relations, uniqueness and variational theorems for elasticplastic materials with a singular yield surface. Quart. Appl. Math.11, 350–354 (1953).

    Google Scholar 

  9. Moreau, J. J.: Fonctionelles sous-différentiables. C. R. Acad. Sci. Paris257, 4117–4119 (1963).

    Google Scholar 

  10. Drucker, D. C.: A more fundamental approach to plastic stress-strain relations. Proc. 1st U.S. Nat. Congr. Appl. Mech., pp. 487–491 (1951).

  11. Nguyen, Q. S., Bui, H. D.: Sur les matériaux élastoplastiques à écrouissage positif ou négatif. J. de Méc.13, 321–342 (1974).

    Google Scholar 

  12. Ilyushin, A. A.: On a postulate of plasticity (in Russian). Prikl. Math. Mekh.18, 503–507 (1961).

    Google Scholar 

  13. Eisenberg, M. A., Phillips, A.: A theory of plasticity with non-coincident yield and loading surfaces. Acta Mechanica11, 247–260 (1971).

    Google Scholar 

  14. Lubliner, J.: A simple theory of plasticity. Int. J. Solids Struct.10, 310–313 (1974).

    Google Scholar 

  15. Lubliner, J.: On loading, yield and quasi-yield hypersurfaces in plasticity theory. Int. J. Solids Struct.11, 1011–1016 (1975).

    Google Scholar 

  16. Lubliner, J.: An axiomatic model of rate-independent plasticity. Int. J. Solids Struct.16, 709–713 (1980).

    Google Scholar 

  17. Pipkin, A. C., Rivlin, R. S.: Mechanics of rate-independent materials. Z. angew. Math. Phys.16, 313–327 (1965).

    Google Scholar 

  18. Owen, D. R.: Thermodynamics of materials with elastic range. Arch. Rat. Mech. Anal.31, 91–112 (1968).

    Google Scholar 

  19. Owen, D. R.: A mechanical theory of materials with elastic range. Arch. Rat. Mech. Anal.37, 85–110 (1970).

    Google Scholar 

  20. Rice, J. R.: Inelastic constitutive relations for solids: an internal variable theory and its application to metal plasticity. J. Mech. Phys. Solids19, 433–434 (1971).

    Google Scholar 

  21. Green, A. E., Naghdi, P. M.: A general theory of an elastic-plastic continuum. Arch. Rat. Mech. Anal.18, 251–281 (1965).

    Google Scholar 

  22. Green, A. E., Naghdi, P. M.: Some remarks on elastic-plastic deformation at finite strain. Int. J. Engng. Sci.9, 1219–1229 (1971).

    Google Scholar 

  23. Lubliner, J.: Generalized plasticity: an internal-variable model of materials with elastic range. Proc. Int. Symp. Plasticity (Norman, OK, 1984) (to be published).

  24. Lubliner, J.: On the structure of the rate equations of materials with internal variables. Acta Mechanica17, 109–119 (1973).

    Google Scholar 

  25. Coleman, B. D., Gurtin, M. E.: Thermodynamics with internal state variables. J. Chemical Phys.47, 597–613 (1967).

    Google Scholar 

  26. Lee, E. H., Liu, D. T.: Finite-strain elastic-plastic theory particularly for plane-wave analysis. J. Appl. Mech.38, 19–27 (1967).

    Google Scholar 

  27. Nemat-Nasser, S.: Decomposition of strain measures and their rates in finite deformation elastoplasticity. Int. J. Solids Struct.15, 155–166 (1979).

    Google Scholar 

  28. Lee, E. H., McMeeking, R. M.: Concerning elastic and plastic components of deformation. Int. J. Solids Struct.16, 715–721 (1980).

    Google Scholar 

  29. Mandel, J.: Sur la définition de la vitesse de déformation élastique et sa relation avec la vitesse de constrainte. Int. J. Solids Struct.17, 873–878 (1981).

    Google Scholar 

  30. Nemat-Nasser, S.: On finite deformation elasto-plasticity. Int. J. Solids Struct.18, 857–872 (1982).

    Google Scholar 

  31. Mandel, J.: Sur la définition de la vitesse de déformation élastique en grande transformation élastoplastique. Int. J. Solids Struct.19, 573–578 (1983).

    Google Scholar 

  32. Hahn, H. T.: A finite-deformation theory of plasticity. Int. J. Solids Struct.10, 111–121 (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lubliner, J. A maximum-dissipation principle in generalized plasticity. Acta Mechanica 52, 225–237 (1984). https://doi.org/10.1007/BF01179618

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01179618

Keywords

Navigation