Skip to main content
Log in

On the use of a spacetime modeling for heat equation applied to self-heating computation with comparison to experimental results

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Self-heating phenomenonrepresents thermal evolution in materials resulting from mechanical loading. It is presentlyinvestigated during fatigue tests at 20 kHz. The aim of this article is to compare the variation of temperature, in the range 20 to 80 C, of a material body due to self-heating computed from an innovative point of view: requiring a covariant formulation of the thermomechanical behavior, we propose a spacetime approach for heat conduction and heat equation based on spacetime thermodynamics. In this article, we prove the feasibility to use such a spacetime framework to solve thermal problems. Thus computational methods performed with FEniCS platform, using finite element method, lead to a numerical approach for investigating self-heating. The integral form of the spacetime problem with the adapted boundary conditions directly usable are provided for heat conduction problem. The identification process of the parameters obtained from the experimental data of fatigue tests is also particularly studied to obtain the best accuracy and reliability of the numerical simulations, presently applied to metallic material (C65 steel) and 1D beam (60 mm length). Moreover, by use of optimization techniques, some numerical values for these input parameters are obtained, especially the characteristic time (in the range 40 to 130 s) and the heat source related to thermomechanical phenomena (intrinsic dissipation in the range 0.3 to 12 C ⋅ s− 1). They have been successfully used to obtain spacetime temperature distributions in comparison to experimental measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Doudard C, Calloch S, Hild F, Roux S (2009) Identification of heat source fields from infra-red thermography: determination of ‘self-heating’ in a dual-phase steel by using a dog bone sample. Mech Mater 42:55–62

    Article  Google Scholar 

  2. Katunin A (2017) Domination of self-heating effect during fatigue of polymeric composites. Procedia Structural Integrity 5:93–98

    Article  MathSciNet  Google Scholar 

  3. Favier V, Blanche A, Wang C, Lam Phung N, Ranc N, Wagner D, Bathias C, Chrysochoos A, Mughrabi H (2016) Very high cycle fatigue for single phase ductile materials: comparison between α-iron, copper and α-brass polycrystals. Int J Fatigue 93:326–338

    Article  Google Scholar 

  4. Chrysochoos A, Wattrisse B, Muracciole JM, El Kaim Y (2009) Fields of stored energy associated with localized necking of steel. J Mech Mater Struct 4(2):245–262

    Article  Google Scholar 

  5. Boulanger T, Chrysochoos A, Mabru C, Galtier A (2004) Calorimetric analysis of dissipative and thermoelastic effects associated with the fatigue behavior of steels. Int J Fatigue 26:221–229

    Article  Google Scholar 

  6. Benaarbia A, Chrysochoos A, Robert G (2016) Thermomechanical analysis of the onset of strain concentration zones in wet polyamide 6.6 subjected to cyclic loading. Mech Mater 99:9–25

    Article  Google Scholar 

  7. Cowles BA (1996) High cycle fatigue in aircraft gas turbines - an industry perspective. Int J Fract 80:147–163

    Article  Google Scholar 

  8. Guo Q, Guo X, Fan J, Syed R, Wu C (2015) An energy method for rapid evaluation of high-cycle fatigue parameters based on intrinsic dissipation. Int J Fatigue 80:136–144

    Article  Google Scholar 

  9. Pu X, Petit J, Darbord-Ranc I, Wagner D (2019) Thermal response of iron and C-Mn steels with different ferrite/pearlite phase fraction under ultrasonic fatigue loading. Mater Sci Eng A 749:96–105

    Article  Google Scholar 

  10. Shenogin SV, Hohne V, Oleinik EF (2002) Thermodynamics of the pre-yield deformation behavior of glassy polymers: measurements with new deformation calorimeter. Thermochim Acta 391(1-2):13–23

    Article  Google Scholar 

  11. Zehnder AT, Babinsky E, Palmer T (1998) Hybrid method for determining the fraction of plastic work converted to heat. Exp Mech 38(4):295–302

    Article  Google Scholar 

  12. Chrysochoos A, Louche H (2000) An infrared picture processing to analyse the calorific effects accompanying strain localisation. Int J Eng Sci 38(16):1759–1788

    Article  Google Scholar 

  13. Wagner D, Ranc N, Bathias C, Paris PC (2009) Fatigue crack initiation detection by an infrared thermography method. Fatigue and Fracture of Engineering Materials and Structures 33(1):12–21

    Google Scholar 

  14. Berthel B (2007) Dissipation field measurements accompanying the high cycle fatigue of steel by infrared thermography (in French). Thesis, University of Montpellier II

  15. Maquin F, Pierron F (2009) Heat dissipation measurements in low stress cyclic loading of metallic materials: from internal friction to micro-plasticity. Mech Mater 41:928–942

    Article  Google Scholar 

  16. Poncelet M, Witz JF, Pron H, Wattrisse B (2011) A study of IRFPA camera measurement errors: radiometric artefacts. Quantitative InfraRed Thermography Journal 8(2):165–186

    Google Scholar 

  17. Blanche A, Chrysochoos A, Ranc N, Favier V (2015) Dissipation assessments during dynamic very high cycle fatigue tests. Exp Mech 55:699–709

    Article  Google Scholar 

  18. Straugham B (2011) Heat waves. Springer, New York

    Book  Google Scholar 

  19. Landau LD, Lifshitz EM (1975) The classical theory of fields, 4th edn. Elsevier, Amsterdam

    MATH  Google Scholar 

  20. Auriault JL (2017) The paradox of fourier heat equation: a theoretical refutation. Int J Eng Sci 118:82–88

    Article  MathSciNet  MATH  Google Scholar 

  21. Osborne JG (1950) Propagation of second sound below 1 k. Low temp. Phys NBS(US) Circular 519:139

    Google Scholar 

  22. Cattaneo C (1958) Sur une forme de l’équation de la chaleur éliminant le paradoxe d’une propagation instantanée. Comptes Rendus de l’Académie des Sciences 247:431–433

    MathSciNet  MATH  Google Scholar 

  23. Vernotte P (1961) Quelques complications possibles dans les phénomènes de conduction thermique. Comptes Rendus Hebdomadaires de séance de l’Académie des Sciences, Paris 252:2190–2191

    Google Scholar 

  24. Tavernier J (1962) Sur l’équation de conduction de la Chaleur [The Equation of Heat Conduction]. Comptes Rendus de l’Académie des Sciences [Proceedings of the Academy of Sciences] 254:69–71

    MathSciNet  Google Scholar 

  25. Narasimhan TN (1999) Fourier’s heat conduction equation: history, influence, and connections. Rev Geophys 37(1):151–172

    Article  Google Scholar 

  26. Christov CI (2009) On frame-indifferent formulation of the Maxwell-Cattaneo model of finite-speed heat conduction. Mech Res Commun 36:481–486

    Article  MathSciNet  MATH  Google Scholar 

  27. Ekoue F, Fouache Plantamp G, Zajdman E (2013) Maxwell-Cattaneo Regularization of heat equation. World academy of science, engineering and technology. International Journal of Physical and Mathematical Sciences 7(5):772–776

    Google Scholar 

  28. Liu W, Saanouni K, Forest S, Hu P (2017) The micromorphic approach to generalized heat equations. Journal of Non-equilibrium Thermodynamics 42(4):327–357

    Article  Google Scholar 

  29. Ván P, Czél B, Fulop T, Grof GY, Gyenis Á, Verhás J (2013) Experimental aspects of heat conduction beyond fourier. In: 12th joint European thermodynamics conference brescia

  30. Truesdell C, Noll W (2003) The non-linear field theories of mechanics, 3rd edn. Springer, Berlin

    MATH  Google Scholar 

  31. Christov CI, Jordan PM (2005) Heat conduction paradox involving second sound propagation in moving media. Phys Rev Lett 94(15):154301

    Article  Google Scholar 

  32. Murdoch AI (1983) On material frame-indifference, intrinsic spin, and certain constitutive relations motivated by the kinetic theory of gases. Arch Ration Mech Anal 83:185–194

    Article  MathSciNet  MATH  Google Scholar 

  33. Fichera G (1992) Is the fourier theory of heat propagation paradoxical. Int Rendiconti del CircoloMatematico di Palermo 2(41):5–28

    Article  MathSciNet  MATH  Google Scholar 

  34. Al Nahas R, Charles A, Panicaud B, Rouhaud E, Choucair I, Saliya K, Kerner R (2019) Investigation on the use of a spacetime formalism for modeling and numerical simulations of heat conduction phenomena. Journal of Non Equilibrium Thermodynamics 45(3):223–246

    Article  Google Scholar 

  35. Bressan A (1978) Relativistic theories of materials. Springer, Berlin

    Book  MATH  Google Scholar 

  36. Adélaide L, Jourdan F, Bohatier C (2003) Frictional contact solver and mesh adaptation in space-time finite element method. European Journal of Mechanics A/Solids 22:633–647

    Article  MathSciNet  MATH  Google Scholar 

  37. ASM International (1998) Metals handbook desk edition. Davis JR

  38. Bathias C, Paris PC (2005) Gigacycle fatigue in mechanical practice. CRC Press, New York

    Google Scholar 

  39. Makowski D (2009) Analyse d’incertitude, analyse de sensibilité. Objectifs et principales étapes. Ecole chercheur Analyse de sensibilité et exploration de modèles, Giens. https://reseau-mexico.fr/sites/default/files/pr2_MakowskiECanalyseSensibilite.pdf. Accessed 09 Mar 2020

  40. Ogawa M, Mukai K, Fukui T, Baba T (2001) The development of a thermal diffusivity reference material using alumina. Meas Sci Technol 12:2058–2063

    Article  Google Scholar 

  41. Conner M (2013) Characterization of heat transfer coefficient uncertainty in support of high temperature probe measurement technology. Masters thesis, University of Tennessee- Knoxville. https://trace.tennessee.edu/utk_gradthes/2600/

  42. Joint Committee for Guides in Metrology (JCGM) (1995). Guide pour l’Expression de l’Incertitude de Mesure. ISO 07–020

  43. Munier R (2012) Etude de la fatigue des aciers laminés à partir de l’auto-échauffement sous sollicitation cyclique: essais, observations modélisation et influence d’une pré-déformation plastique. PHD thesis, University of Bretagne occidentale - Brest. https://tel.archives-ouvertes.fr/tel-00717932

  44. Lemaitre J, Chaboche JL (1990) Mechanics of solid materials. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  45. Saanouni K (2012) Damage mechanics in metal forming advanced modeling and numerical simulation. ISTE/Wiley, London

    Book  Google Scholar 

  46. Schouten JA (1954) Ricci-calculus: an introduction to tensor analysis and its geometrical applications. Springer, Berlin

    Book  MATH  Google Scholar 

  47. Bressan A (1963) Cinematica dei sistemi continui in relativita generale. Annali di matematica pura ed applicata 61(1):99–148

    Article  MathSciNet  MATH  Google Scholar 

  48. Bertram A (2012) Elasticity and plasticity of large deformations, 3rd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  49. Besson J, Cailletaud G, Forest S (2009) Non-linear mechanics of materials. Springer, Netherlands

    MATH  Google Scholar 

  50. Bonet J, Wood RD (2008) Nonlinear continuum mechanics for finite element analysis, 2nd edn. Cambridge university press, New York

    Book  MATH  Google Scholar 

  51. Rouhaud E, Panicaud E, Kerner R (2013) Canonical frame-indifferent transport operators with the four-dimensional formalism of differential geometry. Comput Mater Sci 77:120–130

    Article  Google Scholar 

  52. Panicaud B, Rouhaud E (2014) A frame-indifferent model for a thermo-elastic material beyond the three-dimensional Eulerian and Lagrangian descriptions. Contin Mech Thermodyn 26:79–93

    Article  MathSciNet  MATH  Google Scholar 

  53. Panicaud B, Rouhaud E, Altmeyer G, Wang M, Kerner R, Roos A, Ameline O (2015) Consistent hypo-elastic behavior using the four-dimensional formalism of differential geometry. Acta Mechanica 227(3):651–675

    Article  MathSciNet  MATH  Google Scholar 

  54. Eckart C (1940) The thermodynamics of irreversible processes. iii. relativistic theory of the simple fluid. Phys Rev 58(10):919–924

    Article  MATH  Google Scholar 

  55. Israel W, Stewart JM (1979) On transient relativistic thermodynamics and kinetic theory II. Royal Society of London Proceedings Series A 365:43–52

    MathSciNet  Google Scholar 

  56. Stewart JM (1977) On transient relativistic thermodynamics and kinetic theory. Royal Society of London Proceedings Series A 357:59–75

    MathSciNet  Google Scholar 

  57. Carter B (1988) Conductivity with causality in relativistic hydrodynamics - the regular solution to Eckart’s Problem. In: International conference on gravitation and cosmology, pp 58–65

  58. Grot RA, Eringen A (1966) Relativistic continuum mechanics part i - mechanics and thermodynamics. Int J Eng Sci 4(6):611–638

    Article  Google Scholar 

  59. Muschik W, Borzeszkowski HHV (2015) Entropy production and equilibrium conditions of General-Covariant spin systems. Entropy 17:8325–8340

    Article  Google Scholar 

  60. Landau LD, Lifshitz EM (1966) Fluid mechanics, 3rd edn. Pergamon Press, London

    Google Scholar 

  61. Jou D, Casas-Vázquez J, Lebon G (1988) Extended irreversible thermodynamics. Rep Prog Phys 51(8):1105

    Article  MathSciNet  MATH  Google Scholar 

  62. Debard Y (2011) Méthodedes éléments finis: thermique, Université du Mans Master Modélisation Numérique et Réalité Virtuelle. http://iut.univ-lemans.fr/ydlogi/index.html. Accessed 14 Dec 2019

  63. Oudin H (2008) Méthode des éléments finis. https://cel.archives-ouvertes.fr/cel-00341772v3. Accessed 14 Dec 2019

  64. Clément F, Martin V (2016) The lax-milgram theorem. A detailed proof to be formalized in Coq. https://arxiv.org/pdf/1607.03618.pdf. Accessed 14 Dec 2019

  65. Langtangen HP, Logg A (2017) Solving PDEs in Python, The FEniCS Tutorial I. Springer Open

Download references

Funding

This work was supported by the European Regional Development Funds (FEDER) and the region Grand Est of France and Safran Tech company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoît Panicaud.

Ethics declarations

Conflict of Interests

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Covariant derivative and rate of deformation

Appendix: Covariant derivative and rate of deformation

The covariant derivative of respectively, a scalar density \(\mathcal {S}\) denoted \(\nabla _{\lambda } \mathcal {S}\), and a second-rank tensor density \(\boldsymbol {\mathcal {T}}\) denoted \(\nabla _{\lambda } \mathcal {T}^{\mu \nu }\) is given by:

$$ \begin{array}{@{}rcl@{}} \nabla_{\lambda} \mathcal{S}&=&\frac{\partial \mathcal{S}}{\partial x^{\lambda}} -W{\Gamma}^{\kappa}_{\kappa \lambda}\mathcal{S} \end{array} $$
(45a)
$$ \begin{array}{@{}rcl@{}} \nabla_{\lambda} \mathcal{T}^{\mu\nu} &=& \frac{\partial \mathcal{T}^{\mu\nu}}{\partial x^{\lambda}} + {\Gamma}^{\mu}_{\kappa \lambda}\mathcal{T}^{\kappa\nu} +{\Gamma}^{\nu}_{\kappa \lambda}\mathcal{T}^{\mu\kappa} -W{\Gamma}^{\kappa}_{\kappa \lambda}\mathcal{T}^{\mu\nu} \end{array} $$
(45b)

where W is the weight of the tensor density (W = 0 for temperature field) and \({\Gamma }^{\alpha }_{\beta \gamma }\) are the coefficients of the metric connection identified with Christoffel’s symbols given by:

$$ \begin{array}{@{}rcl@{}} {\Gamma}^{\mu}_{\kappa \lambda}=\frac{1}{2}g^{\mu \alpha} \left( \frac{\partial g_{\alpha \kappa}}{\partial x^{\lambda}} + \frac{\partial g_{\alpha \lambda}}{\partial x^{\kappa}} - \frac{\partial g_{\kappa \lambda}}{\partial x^{\alpha}} \right) ={\Gamma}^{\mu}_{\lambda \kappa} \end{array} $$
(46)

Note that in this case ∇λgμν = 0 and that for every point of the spacetime domain, for an inertial observer, all Christoffel’s symbols vanish.

It is important to stress out that, as a consequence of the absence of gravitation, the Riemann curvature tensor of this spacetime domain is equal to zero, although the Christoffel’s symbols may not. In other words, the considered spacetime is Euclidean, thus flat, whether the observer is inertial (\(\Rightarrow {\Gamma }^{\mu }_{\kappa \lambda }=0\)), or not (\(\Rightarrow {\Gamma }^{\mu }_{\kappa \lambda }\neq 0\)) [19].

A covariant transport corresponding to the projection of the covariant derivative on the proper time uλλ(.) is also defined. In an inertial coordinate system zμ, in which the Christoffel’s symbols vanish, the covariant transport may be rewritten as:

$$ \begin{array}{@{}rcl@{}} u^{\lambda } \nabla_{\lambda} (.)=\frac{d(.)}{ds}= u^{\lambda} \frac{\partial }{\partial z^{\lambda}}(.)=u^{4} \frac{\partial }{\partial z^{4}}(.)+u^{i} \frac{\partial }{\partial z^{i}}(.) \end{array} $$
(47)

We further introduce the four-tensor rate of deformation d, a generalization of the symmetric part of the velocity gradient:

$$ \begin{array}{@{}rcl@{}} d^{\mu}_{\phantom{a}\nu}&=&\frac{1}{2}(\nabla_{\nu} u^{\mu}+\nabla_{\mu} u^{\nu}) \end{array} $$
(48)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nahas, R.A., Petit, J., Charles, A. et al. On the use of a spacetime modeling for heat equation applied to self-heating computation with comparison to experimental results. Heat Mass Transfer 57, 2045–2066 (2021). https://doi.org/10.1007/s00231-021-03069-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-021-03069-y

Keywords

Navigation