Skip to main content
Log in

MXene-sensitized electrochemiluminescence sensor for thrombin activity detection and inhibitor screening

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Thrombin, a crucial enzyme involved in blood coagulation and associated diseases, requires accurate detection of its activity and screening of inhibitors for clinical diagnosis and drug discovery. To address this, an electrochemiluminescence (ECL) method was developed to detect thrombin activity based on the sensitization of Ti3C2Tx MXene, which could sensitize the Ru(bpy)32+ ECL system greatly. The thrombin-cleavable substrate bio-S-G-R-P–V-L-G-C was used as recognizer to evaluate the activity of thrombin. Under the optimal conditions, the limit of detection for thrombin in serum was 83 pU/mL (S/N = 3) with a linear range from 0.1 nU/mL to 1 µU/mL. Moreover, the developed ECL biosensor was employed to screen for thrombin inhibitors from Artemisiae argyi Folium. Four potential thrombin inhibitors (isoquercitrin, nepetin, L-camphor, L-borneol) were screened out with inhibition rates beyond 50%, among which isoquercitrin had the best inhibition rate of 90.26%. Isoquercitrin and nepetin were found to be competitive inhibitors of thrombin, with \({K}_{i}^{app}\) values of 0.91 μM and 2.18 μM, respectively. Molecular docking results showed that these compounds could interact with the active sites of thrombin through hydrogen bonds including ASP189, SER195, GLY216, and GLY219. The electrochemical biosensor constructed provides a new idea for the detection of thrombin activity and screening of its inhibitors.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Davie EW, Kulman JD (2006) An overview of the structure and function of thrombin. Semin Thromb Hemost 32(Suppl 1):3–15. https://doi.org/10.1055/s-2006-939550

    Article  CAS  PubMed  Google Scholar 

  2. Shlobin NA, Har-Even M, Itsekson-Hayosh Z, Harnof S, Pick CG (2021) Role of thrombin in central nervous system injury and disease. Biomolecules 11:562–581. https://doi.org/10.3390/biom11040562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sharma T, Brunet JG, Tasneem S, Smith SA, Morrissey JH, Hayward CPM (2021) Thrombin generation abnormalities in commonly encountered platelet function disorders. Int J Lab Hematol 43:1557–1565. https://doi.org/10.1111/ijlh.13638

    Article  PubMed  PubMed Central  Google Scholar 

  4. Megia-Fernandez A, Mills B, Michels C, Chankeshwara SV, Dhaliwal K, Bradley M (2017) Highly selective and rapidly activatable fluorogenic thrombin sensors and application in human lung tissue. Org Biomol Chem 15:4344–4350. https://doi.org/10.1039/c7ob00663b

    Article  CAS  PubMed  Google Scholar 

  5. Koren O, Azaizah M, Rozner E, Elias M, Turgeman Y (2020) Role of thrombin generation assays in the diagnosis of acute myocarditis and non-ST myocardial infarction. J Thromb Thrombolysis 50:144–150. https://doi.org/10.1007/s11239-019-01996-6

    Article  CAS  PubMed  Google Scholar 

  6. Eivazzadeh-Keihan R, Saadatidizaji Z, Maleki A, de la Guardia M, Mahdavi M, Barzegar S, Ahadian S (2022) Recent progresses in development of biosensors for thrombin detection. Biosensors (Basel) 12:767–799. https://doi.org/10.3390/bios12090767

    Article  CAS  PubMed  Google Scholar 

  7. Saa L, Diez-Buitrago B, Briz N, Pavlov V (2019) CdS quantum dots generated in-situ for fluorometric determination of thrombin activity. Microchim Acta 186:657–664. https://doi.org/10.1007/s00604-019-3765-2

    Article  CAS  Google Scholar 

  8. Pochet L, Servais AC, Farcas E, Bettonville V, Bouckaert C, Fillet M (2013) Determination of inhibitory potency of argatroban toward thrombin by electrophoretically mediated microanalysis. Talanta 116:719–725. https://doi.org/10.1016/j.talanta.2013.07.030

    Article  CAS  PubMed  Google Scholar 

  9. Osterud B, Latysheva N, Schoergenhofer C, Jilma B, Hansen JB, Snir O (2022) A rapid, sensitive, and specific assay to measure TF activity based on chromogenic determination of thrombin generation. J Thromb Haemost 20:866–876. https://doi.org/10.1111/jth.15606

    Article  CAS  PubMed  Google Scholar 

  10. Binder NB, Depasse F, Mueller J, Wissel T, Schwers S, Germer M, Hermes B, Turecek PL (2021) Clinical use of thrombin generation assays. J Thromb Haemost 19:2918–2929. https://doi.org/10.1111/jth.15538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Depasse F, Binder NB, Mueller J, Wissel T, Schwers S, Germer M, Hermes B, Turecek PL (2021) Thrombin generation assays are versatile tools in blood coagulation analysis: a review of technical features, and applications from research to laboratory routine. J Thromb Haemost 19:2907–2917. https://doi.org/10.1111/jth.15529

    Article  PubMed  PubMed Central  Google Scholar 

  12. Abdussalam A, Xu G (2022) Recent advances in electrochemiluminescence luminophores. Anal Bioanal Chem 414:131–146. https://doi.org/10.1007/s00216-021-03329-0

    Article  CAS  PubMed  Google Scholar 

  13. Yang J, Xia Q, Guo L, Luo F, Dong Y, Qiu B, Lin Z (2020) A highly sensitive signal-on biosensor for microRNA 142–3p based on the quenching of Ru(bpy)32+-TPA electrochemiluminescence by carbon dots and duplex specific nuclease-assisted target recycling amplification. Chem Commun (Camb) 56:6692–6695. https://doi.org/10.1039/c9cc09706f

    Article  CAS  PubMed  Google Scholar 

  14. Gao X, Gu X, Min Q, Wei Y, Tian C, Zhuang X, Luan F (2022) Encapsulating Ru(bpy)32+ in an infinite coordination polymer network: towards a solid-state electrochemiluminescence sensing platform for histamine to evaluate fish product quality. Food Chem 368:130852. https://doi.org/10.1016/j.foodchem.2021.130852

    Article  CAS  PubMed  Google Scholar 

  15. Devaraj M, Rajendran S, Hoang TKA, Soto-Moscoso M (2022) A review on MXene and its nanocomposites for the detection of toxic inorganic gases. Chemosphere 302:134933. https://doi.org/10.1016/j.chemosphere.2022.134933

    Article  CAS  PubMed  Google Scholar 

  16. Hou MZ, Chen LL, Chang C, Zan JF, Du SM (2021) Pharmacokinetic and tissue distribution study of eight volatile constituents in rats orally administrated with the essential oil of Artemisiae Argyi Folium by GC-MS/MS. J Chromatogr B 1181:122904. https://doi.org/10.1016/j.jchromb.2021.122904

    Article  CAS  Google Scholar 

  17. Ma Q, Tan D, Gong X, Ji H, Wang K, Lei Q, Zhao G (2022) An extract of Artemisia Argyi leaves rich in organic acids and flavonoids promotes growth in BALB/c mice by regulating intestinal flora. Animals (Basel) 12:1519–1536. https://doi.org/10.3390/ani12121519

    Article  PubMed  Google Scholar 

  18. Huang W, Wang Y, Liang WB, Hu GB, Yao LY, Yang Y, Zhou K, Yuan R, Xiao DR (2021) Two birds with one stone: surface functionalization and delamination of multilayered Ti3C2Tx MXene by grafting a ruthenium(II) complex to achieve conductivity-enhanced electrochemiluminescence. Anal Chem 93:1834–1841. https://doi.org/10.1021/acs.analchem.0c04782

    Article  CAS  PubMed  Google Scholar 

  19. Dong YP, Chen G, Zhou Y, Zhu JJ (2016) Electrochemiluminescent sensing for caspase-3 activity based on Ru(bpy)32+-doped silica nanoprobe. Anal Chem 88:1922–1929. https://doi.org/10.1021/acs.analchem.5b04379

    Article  CAS  PubMed  Google Scholar 

  20. Alhabeb M, Maleski K, Anasori B, Lelyukh P, Clark L, Sin S, Gogotsi Y (2017) Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2TX MXene). Chem Mater 29:7633–7644. https://doi.org/10.1021/acs.chemmater.7B02847

    Article  CAS  Google Scholar 

  21. Huang H, Xie S, Deng L, Yuan J, Yue R, Xu J (2022) Fabrication of rGO/MXene-Pd/rGO hierarchical framework as high-performance electrochemical sensing platform for luteolin detection. Microchim Acta 189:59–69. https://doi.org/10.1007/s00604-021-05132-1

    Article  CAS  Google Scholar 

  22. Zhang J, Kerr E, Usman KAS, Doeven EH, Francis PS, Henderson LC, Razal JM (2020) Cathodic electrogenerated chemiluminescence of tris(2,2’-bipyridine)ruthenium(ii) and peroxydisulfate at pure Ti3C2TX MXene electrodes. Chem Commun (Camb) 56:10022–10025. https://doi.org/10.1039/d0cc02993a

    Article  CAS  PubMed  Google Scholar 

  23. Karaman C, Karaman O, Atar N, Yola ML (2021) Electrochemical immunosensor development based on core-shell high-crystalline graphitic carbon nitride@carbon dots and Cd0.5Zn0.5S/d-Ti3C2Tx MXene composite for heart-type fatty acid–binding protein detection. Microchim Acta 188:182–197. https://doi.org/10.1007/s00604-021-04838-6

    Article  CAS  Google Scholar 

  24. Sun Y, Zhang Y, Zhang H, Liu M, Liu Y (2020) Integrating highly efficient recognition and signal transition of g-C3N4 embellished Ti3C2 MXene hybrid nanosheets for electrogenerated chemiluminescence analysis of protein kinase activity. Anal Chem 92:10668–10676. https://doi.org/10.1021/acs.analchem.0c01776

    Article  CAS  PubMed  Google Scholar 

  25. Koyappayil A, Chavan SG, Mohammadniaei M, Go A, Hwang SY, Lee M-H (2020) β-Hydroxybutyrate dehydrogenase decorated MXene nanosheets for the amperometric determination of β-hydroxybutyrate. Microchim Acta 187:277–284. https://doi.org/10.1007/s00604-020-04258-y

    Article  CAS  Google Scholar 

  26. Han M, Yin X, Wu H, Hou Z, Song C, Li X, Zhang L, Cheng L (2016) Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-band. ACS Appl Mater Interfaces 8:21011–21019. https://doi.org/10.1021/acsami.6b06455

    Article  CAS  PubMed  Google Scholar 

  27. Yang J, Deng C, Zhong W, Peng G, Zou J, Lu Y, Gao Y, Li M, Zhang S, Lu L (2023) Electrochemical activation of oxygen vacancy-rich TiO2@MXene as high-performance electrochemical sensing platform for detecting imidacloprid in fruits and vegetables. Microchim Acta 190:146–157. https://doi.org/10.1007/s00604-023-05734-x

    Article  CAS  Google Scholar 

  28. Halim J, Cook KM, Naguib M, Eklund P, Barsoum MW (2016) X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). Appl Sur Sci 362:406–417. https://doi.org/10.1016/j.apsusc.2015.11.089

    Article  CAS  Google Scholar 

  29. Tang X, Zhou Z, Jiang Y, Wang Q, Sun Q, Zu L, Gao X, Lian H, Cao M, Cui X (2022) MXene enhanced the electromechanical performance of a nafion-based actuator. Materials (Basel) 15:2833–2844. https://doi.org/10.3390/ma15082833

    Article  CAS  PubMed  Google Scholar 

  30. Du J-F, Chen J-S, Liu X-P, Mao C-J, Jin B-K (2022) Coupled electrochemiluminescent and resonance energy transfer determination of microRNA-141 using functionalized Mxene composite. Microchim Acta 189:264–273. https://doi.org/10.1007/s00604-022-05359-6

    Article  CAS  Google Scholar 

  31. Wang D, Li Y, Lin Z, Qiu B, Guo L (2015) Surface-enhanced electrochemiluminescence of Ru@SiO2 for ultrasensitive detection of carcinoembryonic antigen. Anal Chem 87:5966–5972. https://doi.org/10.1021/acs.analchem.5b01038

    Article  CAS  PubMed  Google Scholar 

  32. Zhai H, Wang Y, Yin J, Zhang Y, Guo Q, Sun X, Guo Y, Yang Q, Li F, Zhang Y (2022) Electrochemiluminescence biosensor for determination of lead(II) ions using signal amplification by Au@SiO2 and tripropylamine-endonuclease assisted cycling process. Microchim Acta 189:317–328. https://doi.org/10.1007/s00604-022-05429-9

    Article  CAS  Google Scholar 

  33. Ding L, Zou H, Lu J, Liu H, Wang S, Yan H, Li Y (2022) Enhancing proton conductivity of nafion membrane by incorporating porous Tb-metal-organic framework modified with nitro groups. Inorg Chem 61:16185–16196. https://doi.org/10.1021/acs.inorgchem.2c02782

    Article  CAS  PubMed  Google Scholar 

  34. Hu S, Zhu H, Liu S, Xiang J, Sun W, Zhang L (2012) Electrochemical detection of rutin with a carbon ionic liquid electrode modified by nafion, graphene oxide and ionic liquid composite. Microchim Acta 178:211–219. https://doi.org/10.1007/s00604-012-0811-8

    Article  CAS  Google Scholar 

  35. Escolar G, Bozzo J, Maragall S (2006) Argatroban: a direct thrombin inhibitor with reliable and predictable anticoagulant actions. Drugs Today (Barc) 42:223–236. https://doi.org/10.1358/dot.2006.42.4.953588

    Article  CAS  PubMed  Google Scholar 

  36. Li M, Ren Y (2015) Synthesis and biological evaluation of some new 2,5-substituted 1-Ethyl-1H-benzoimidazole fluorinated derivatives as direct thrombin inhibitors. Arch Pharm (Weinheim) 348:353–365. https://doi.org/10.1002/ardp.201400463

    Article  CAS  PubMed  Google Scholar 

  37. Seibert E, Tracy TS (2021) Fundamentals of enzyme kinetics: michaelis-menten and non-michaelis-type (atypical) enzyme kinetics. Methods Mol Biol 2342:3–27. https://doi.org/10.1007/978-1-0716-1554-6_1

    Article  PubMed  Google Scholar 

  38. Fan R, Tian J, Wang H, Wang X, Zhou P (2022) Sensitive colorimetric assay of hydrogen peroxide and glucose in humoral samples based on the enhanced peroxidase-mimetic activity of NH2-MIL-88-derived FeS2@CN nanocomposites compared to its precursors. Microchim Acta 189:427–437. https://doi.org/10.1007/s00604-022-05525-w

    Article  CAS  Google Scholar 

  39. Ferraraccio LS, Di Lisa D, Pastorino L, Bertoncello P (2022) Enzymes encapsulated within alginate hydrogels: bioelectrocatalysis and electrochemiluminescence applications. Anal Chem 94:16122–16131. https://doi.org/10.1021/acs.analchem.2c03389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xu Z, Liu R, Guan H (2017) Dual-target inhibitor screening against thrombin and factor Xa simultaneously by mass spectrometry. Anal Chim Acta 990:1–10. https://doi.org/10.1016/j.aca.2017.07.063

    Article  CAS  PubMed  Google Scholar 

  41. Zavyalova E, Kopylov A (2015) Multiple inhibitory kinetics reveal an allosteric interplay among thrombin functional sites. Thromb Res 135:212–216. https://doi.org/10.1016/j.thromres.2014.11.005

    Article  CAS  PubMed  Google Scholar 

  42. Shi Y, Sun W, Pan X, Hou X, Wang S, Zhang J (2020) Establishment of thrombin affinity column (TAC)-HPLC-MS/MS method for screening direct thrombin inhibitors from radix salviae miltiorrhiae. J Chromatogr B 1139:121894. https://doi.org/10.1016/j.jchromb.2019.121894

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the National Natural Science Foundation of China (81973277, 82273891, 82003709, 22274126) and the National Natural Science Foundation of Shaanxi Province (2021JM-039, 2023-YBSF-262) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaofang Hou, Sicen Wang or Junbo Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2826 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Z., Tan, X., Guo, D. et al. MXene-sensitized electrochemiluminescence sensor for thrombin activity detection and inhibitor screening. Microchim Acta 190, 328 (2023). https://doi.org/10.1007/s00604-023-05906-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05906-9

Keywords

Navigation