Skip to main content
Log in

CdS quantum dots generated in-situ for fluorometric determination of thrombin activity

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A method is presented for sensitive determination of thrombin activity. It is based on (a) the interaction between fibrinogen after activation with thrombin, and (b) an enzymatic amplification step consisting of in-situ growth of CdS quantum dots (QDs). Fibrinogen is immobilized on the surface of the wells of a microplate and then incubated with a mixture of biotinylated fibrinogen and thrombin. Thrombin activates immobilized fibrinogen and free biotinylated fibrinogen. This leads to the formation of insoluble biotinylated fibrin that remains bound on the surface of the wells. Afterwards, the samples are incubated with avidin-labeled alkaline phosphatase (ALP) which binds to biotinylated fibrin. ALP hydrolyzes the substrate p-nitrophenyl phosphate (pNPP) under formation of phosphate ions which stabilize CdS QDs that are grown in-situ from cadmium(II) and sulfide. The generation of fibrin is correlated with the activity of thrombin. Increased thrombin concentration results in increased fluorescence that can be measured at excitation/emission wavelengths of 300/510 nm. The introduction of such an amplification step (the enzyme-triggered growth of QDs) allows for the quantification of thrombin in the picomolar concentration range, with a linear response up to 2.5 pM and a detection limit of 0.05 pM. The method was applied to the determination of thrombin activity in human plasma and of the thrombin inhibitor argatroban.

Schematic representation of a fluorometric method for determination of thrombin activity in the picomolar concentration range based on the interaction between fibrinogen after activation with thrombin, and an enzymatic amplification step consisting of in-situ growth of CdS quantum dots (CdS QD).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Becker RC, Spencer FA (1998) Thrombin: structure, biochemistry, measurement, and status in clinical medicine. J Thromb Thrombolysis 5:215–229. https://doi.org/10.1023/A:1008843925851

    Article  CAS  PubMed  Google Scholar 

  2. Strukova SM (2001) Thrombin as a regulator of inflammation and reparative processes in tissues. Biochemistry 66:8–18. https://doi.org/10.1023/A:1002869310180

    Article  CAS  PubMed  Google Scholar 

  3. Weaver F, Ham SW, Lew WK (2010) Thrombin use in surgery: an evidence-based review of its clinical use. J Blood Med 1:135–142. https://doi.org/10.2147/JBM.S6622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bichler J, Heit JA, Owen WG (1996) Detection of thrombin in human blood by ex-vivo hirudin. Thromb Res 84:289–294. https://doi.org/10.1016/S0049-3848(96)00189-2

    Article  CAS  PubMed  Google Scholar 

  5. Wolberg AS (2007) Thrombin generation and fibrin clot structure. Blood Rev 21:131–142. https://doi.org/10.1016/j.blre.2006.11.001

    Article  CAS  PubMed  Google Scholar 

  6. Chang J-Y (1985) Thrombin specificity. Eur J Biochem 151:217–224. https://doi.org/10.1111/j.1432-1033.1985.tb09091.x

    Article  CAS  PubMed  Google Scholar 

  7. Yang Z, Mochalkin I, Doolittle RF (2000) A model of fibrin formation based on crystal structures of fibrinogen and fibrin fragments complexed with synthetic peptides. Proc Natl Acad Sci 97:14156–14161. https://doi.org/10.1073/pnas.97.26.14156

    Article  CAS  PubMed  Google Scholar 

  8. Pavlov V, Xiao Y, Shlyahovsky B, Willner I (2004) Aptamer-functionalized au nanoparticles for the amplified optical detection of thrombin. J Am Chem Soc 126:11768–11769. https://doi.org/10.1021/ja046970u

    Article  CAS  PubMed  Google Scholar 

  9. Chen YX, Huang KJ, He LL, Wang YH (2018) Tetrahedral DNA probe coupling with hybridization chain reaction for competitive thrombin aptasensor. Biosens Bioelectron 100:274–281. https://doi.org/10.1016/j.bios.2017.09.022

    Article  CAS  PubMed  Google Scholar 

  10. Li J, Jiao Y, Liu Q, Chen Z (2018) Colorimetric detection of thrombin based on intensity of gold nanoparticle oligomers with dark-field microscope. ACS Sustain Chem Eng 6:6738–6745. https://doi.org/10.1021/acssuschemeng.8b00521

    Article  CAS  Google Scholar 

  11. Wen D, He M, Ma K, Cui Y, Kong J, Yang H, Liu Q (2018) Highly sensitive fluorometric determination of thrombin by on-chip signal amplification initiated by terminal deoxynucleotidyl transferase. Microchim Acta 185:380. https://doi.org/10.1007/s00604-018-2903-6

    Article  CAS  Google Scholar 

  12. Mackie IJ, Kitchen S, Machin SJ, Lowe GDO (2003) Guidelines on fibrinogen assays. Br J Haematol 121:396–404. https://doi.org/10.1046/j.1365-2141.2003.04256.x

    Article  PubMed  Google Scholar 

  13. Oberfrank S, Drechsel H, Sinn S, Northoff H, Gehring FK (2016) Utilisation of quartz crystal microbalance sensors with dissipation (QCM-D) for a clauss fibrinogen assay in comparison with common coagulation reference methods. Sensors 16:282. https://doi.org/10.3390/s16030282

    Article  CAS  PubMed  Google Scholar 

  14. Hou S, Zhang A, Su M (2016) Nanomaterials for biosensing applications. Nanomaterials 6:58. https://doi.org/10.3390/nano6040058

    Article  PubMed Central  Google Scholar 

  15. Li YJ, Chiu WJ, Unnikrishnan B, Huang CC (2014) Monitoring thrombin generation and screening anticoagulants through pulse laser-induced fragmentation of biofunctional nanogold on cellulose membranes. ACS Appl Mater Interfaces 6:15253–15261. https://doi.org/10.1021/am503615c

    Article  CAS  PubMed  Google Scholar 

  16. Niu Y, Wang P, Zhao Y, Fan A (2013) Turn-on colorimetric sensor for ultrasensitive detection of thrombin using fibrinogen-gold nanoparticle conjugate. Analyst 138:1475–1482. https://doi.org/10.1039/c2an36269d

    Article  CAS  PubMed  Google Scholar 

  17. Chen C-K, Huang C-C, Chang H-T (2010) Label-free colorimetric detection of picomolar thrombin in blood plasma using a gold nanoparticle-based assay. Biosens Bioelectron 25:1922–1927. https://doi.org/10.1016/j.bios.2010.01.005

    Article  CAS  PubMed  Google Scholar 

  18. Lin J-H, Huang K-H, Zhan S-W, Yu C-J, Tseng W-L, Hsieh M-M (2019) Inhibition of catalytic activity of fibrinogen-stabilized gold nanoparticles via thrombin-induced inclusion of nanoparticle into fibrin: application for thrombin sensing with more than 104-fold selectivity. Spectrochim Acta Part A Mol Biomol Spectrosc 210:59–65. https://doi.org/10.1016/j.saa.2018.11.013

    Article  CAS  Google Scholar 

  19. Chen YY, Tseng CW, Chang HY, Hung YL, Huang CC (2011) Gold nanoparticle-based colorimetric assays for coagulation-related proteins and their inhibition reactions. Biosens Bioelectron 26:3160–3166. https://doi.org/10.1016/j.bios.2010.12.019

    Article  CAS  PubMed  Google Scholar 

  20. Gao X, Liu X, Lin Z, Liu S, Su X (2012) CuInS2 quantum dots as a near-infrared fluorescent probe for detecting thrombin in human serum. Analyst 137:5620–5624. https://doi.org/10.1039/c2an35888c

    Article  CAS  PubMed  Google Scholar 

  21. Saa L, Pavlov V (2012) Enzymatic growth of quantum dots: applications to probe glucose oxidase and horseradish peroxidase and sense glucose. Small 8:3449–3455. https://doi.org/10.1002/smll.201201364

    Article  CAS  PubMed  Google Scholar 

  22. Garai-Ibabe G, Möller M, Pavlov V (2012) Ultrasensitive assay for detection of serum paraoxonase by modulating the growth of fluorescent semiconductor nanoparticles. Anal Chem 84:8033–8037. https://doi.org/10.1021/ac3018857

    Article  CAS  PubMed  Google Scholar 

  23. Malashikhina N, Garai-Ibabe G, Pavlov V (2013) Unconventional application of conventional enzymatic substrate: first fluorogenic immunoassay based on enzymatic formation of quantum dots. Anal Chem 85:6866–6870. https://doi.org/10.1021/ac4011342

    Article  CAS  PubMed  Google Scholar 

  24. Yin J, Zhang A, Dong C, Ren J (2015) An aptamer-based single particle method for sensitive detection of thrombin using fluorescent quantum dots as labeling probes. Talanta 144:13–19. https://doi.org/10.1016/j.talanta.2015.05.034

    Article  CAS  PubMed  Google Scholar 

  25. Zhang X, Hu R, Shao N (2013) Label-free sensing of thrombin based on quantum dots and thrombin binding aptamer. Talanta 107:140–145. https://doi.org/10.1016/j.talanta.2013.01.003

    Article  CAS  PubMed  Google Scholar 

  26. Chen Z, Tan L, Hu L, Zhang Y, Wang S, Lv F (2016) Real colorimetric thrombin Aptasensor by masking surfaces of catalytically active gold nanoparticles. ACS Appl Mater Interfaces 8:102–108. https://doi.org/10.1021/acsami.5b08975

    Article  CAS  PubMed  Google Scholar 

  27. Cheng T, Li X, Huang P, Wang H, Wang M, Yang W (2019) Colorimetric and electrochemical (dual) thrombin assay based on the use of a platinum nanoparticle modified metal-organic framework (type Fe-MIL-88) acting as a peroxidase mimic. Microchim Acta 186:94. https://doi.org/10.1007/s00604-018-3209-4

    Article  CAS  Google Scholar 

  28. Shuai H-L, Wu X, Huang K-J (2017) Molybdenum disulfide sphere-based electrochemical aptasensors for protein detection. J Mater Chem B 5:5362–5372. https://doi.org/10.1039/C7TB01276D

    Article  CAS  Google Scholar 

  29. Xiong Y, Liang M, Cheng Y, Zou J, Li Y (2019) An “off–on” phosphorescent aptasensor for the detection of thrombin based on PRET. Analyst 144:161–171. https://doi.org/10.1039/C8AN01571F

    Article  CAS  Google Scholar 

  30. Lox CD, Strohm GH, Corrigan JJ Jr (1978) Radioimmunoassay of human prothrombin—the quantitation of plasma factor II antigen. Am J Hematol 4:261–267. https://doi.org/10.1002/ajh.2830040308

    Article  CAS  PubMed  Google Scholar 

  31. Koldas M, Uras F (2001) Avidin-biotin ELISA for measurement of prothrombin in human plasma. Thromb Res 102:221–227. https://doi.org/10.1016/S0049-3848(01)00257-2

    Article  CAS  PubMed  Google Scholar 

  32. Hursting MJ, Alford KL, Becker JP, Brooks RL, Joffrion JL, Knappenberger GD, Kogan PW, Kogan TP, Mckinney AA, Schwarz RP (1997) Novastan® (brand of Argatroban): a small-molecule, direct thrombin inhibitor. Semin Thromb Hemost 23:503–516. https://doi.org/10.1055/s-2007-996128

    Article  CAS  PubMed  Google Scholar 

  33. Morita T, Iwanaga S. (1981) Prothrombin activator from Echis carinatus venom. Methods Enzymol 80:303–311. https://doi.org/10.1016/S0076-6879(81)80026-2

  34. Virel A, Saa L, Pavlov V (2012) Quantification of prothrombin in human plasma amplified by autocatalytic reaction. Anal Chem 84:2380–2387. https://doi.org/10.1021/ac203138y

    Article  CAS  PubMed  Google Scholar 

  35. Hemker HC, Giesen P, Al Dieri R, Regnault V, De Smedt E, Wagenvoord R, Lecompte T, Béguin S (2003) Calibrated automated thrombin generation measurement in clotting plasma. Pathophysiol Haemost Thromb 33:4–15. https://doi.org/10.1159/000071636

    Article  CAS  PubMed  Google Scholar 

  36. Hemker HC, Giesen P, Aldieri R, Regnault V, De SE, Wagenvoord R, Lecompte T, Béguin S (2002) The calibrated automated Thrombogram (CAT): a universal routine test for hyper- and hypocoagulability. Pathophysiol Haemost Thromb 32:249–253

    Article  CAS  Google Scholar 

  37. Danzer K, Currie LA (1998) Guidelines for calibration in analytical chemistry. Part I. fundamentals and single component calibration (IUPAC recommendations 1998). Pure Appl Chem 70:993–1014. https://doi.org/10.1351/pac199870040993

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Science, Innovation and Universities/AEI/FEDER, UE (RETOS I + D – Grant No.BIO2017-88030-R and the Maria de Maeztu Units of Excellence Programme – Grant No. MDM-2017-0720).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Valeri Pavlov.

Ethics declarations

All procedures performed in studies did not involve neither human participants nor animals. Lyophilized human plasma and other blood derived materials were obtained from Sigma Inc.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

Size distribution of the CdS QDs, comparison between colorimetric and fluorogenic methods and effect of argatroban on the detection system. (DOCX 465 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saa, L., Díez-Buitrago, B., Briz, N. et al. CdS quantum dots generated in-situ for fluorometric determination of thrombin activity. Microchim Acta 186, 657 (2019). https://doi.org/10.1007/s00604-019-3765-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3765-2

Keywords

Navigation