Skip to main content
Log in

Fabrication of rGO/MXene-Pd/rGO hierarchical framework as high-performance electrochemical sensing platform for luteolin detection

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A  nanocomposite of rGO/MXene-Pd/rGO with hierarchical structure based on Ti3C2Tx MXene, Pd nanoparticles, and reduced graphene oxide (rGO) was synthesized by a green approach. Ti3C2Tx MXene decorated with Pd nanoparticles (MXene-Pd) was prepared first. Then, graphene oxide (GO), MXene-Pd, and GO were coated on the surface of the glassy carbon electrode (GCE) in sequence. After each coating of the GO layer, the GO nanosheets were reduced to rGO electrochemically. The fabricated rGO/MXene-Pd/rGO hierarchical framework performs a pie structure with MXene-Pd as the stuffing and rGO nanosheets as the crust, which will be beneficial to the enhancement of its electrochemical sensing performance. As compared with other electrodes, the rGO/MXene-Pd/rGO/GCE exhibited higher electrocatalytic activity and better sensing performance for luteolin detection, with a wide linear range of 6.0 × 10−10 to 8 × 10−7 M and 1.0 × 10−6 to 1.0 × 10−5 M (oxidation peak potential Epa = 0.34 V vs. SCE), a low detection limit of 2.0 × 10−10 M, and a high sensitivity of 112.72 µA µM−1 cm−2. Moreover, the fabricated sensor also showed high selectivity, reproducibility, and repeatability toward the detection of luteolin. The real sample analysis for luteolin in honeysuckle was successfully carried out by rGO/MXene-Pd/rGO and verified with high-performance liquid chromatography (HPLC) analysis techniques with acceptable results. All the above tests indicate the promising application prospect of the rGO/MXene-Pd/rGO framework for luteolin detection in honeysuckle and other herbs containing luteolin.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Williams CA, Grayer RJ (2004) Anthocyanins and other flavonoids. Nat Prod Rep 21:539–573

    Article  CAS  Google Scholar 

  2. Veitch NC, Grayer REJ (2008) Flavonoids and their glycosides, including anthocyanins. Nat Prod Rep 25:555–611

    Article  CAS  Google Scholar 

  3. Gao F, Chen XQ, Tanaka H, Nishitani A, Wang QX (2016) Alkaline phosphatase mediated synthesis of carbon nanotube-hydroxyapatite nanocomposite and its application for electrochemical determination of luteolin. Adv Powder Technol 27:921–928

    Article  CAS  Google Scholar 

  4. You ZY, Fu YF, Xiao AP, Liu LL, Huang SQ (2021) Magnetic molecularly imprinting polymers and reduced graphene oxide modified electrochemical sensor for the selective and sensitive determination of luteolin in natural extract. Arab J Chem 14:102990

    Article  CAS  Google Scholar 

  5. Wei B, Lin Q, Ji YG, Zhao YC, Ding LN, Zhou WJ, Zhang LH, Gao CY, Zhao W (2018) Luteolin ameliorates rat myocardial ischaemia-reperfusion injury through activation of peroxiredoxin II. Brit J Pharmacol 175:3315–3332

    Article  CAS  Google Scholar 

  6. Kanazawa K, Uehara M, Yanagitani H, Hashimoto T (2006) Bioavailable flavonoids to suppress the formation of 8-OHdG in HepG2 cells. Arch Biochem Biophys 455:197–203

    Article  CAS  Google Scholar 

  7. Wang Y, Wu YC, Ge HL, Chen HH, Ye GQ, Hu XY (2014) Fabrication of metal-organic frameworks and graphite oxide hybrid composites for solid-phase extraction and preconcentration of luteolin. Talanta 122:91–96

    Article  CAS  Google Scholar 

  8. Saraji M, Ghani M (2014) Dissolvable layered double hydroxide coated magnetic nanoparticles for extraction followed by high performance liquid chromatography for the determination of phenolic acids in fruit juices. J Chromatogr A 1366:24–30

    Article  CAS  Google Scholar 

  9. Jiang FX, Yue RR, Du YK, Xu JK, Yang P (2013) A one-pot ‘green’ synthesis of Pd-decorated PEDOT nanospheres for nonenzymatic hydrogen peroxide sensing. Biosens Bioelectron 44:127–131

    Article  CAS  Google Scholar 

  10. Trefz P, Schmidt M, Oertel P, Obermeier J, Brock B, Kamysek S, Dunkl J, Zimmermann R, Schubert JK, Miekisch M (2013) Continuous real time breath gas monitoring in the clinical environment by proton-transfer-reaction-time-of-flight-mass spectrometry. Anal Chem 85:10321–10329

    Article  CAS  Google Scholar 

  11. Hu XP, Liu YW, Xia YD, Zhao FQ, Zeng BZ (2021) A novel ratiometric electrochemical sensor for the selective detection of citrinin based on molecularly imprinted poly(thionine) on ionic liquid decorated boron and nitrogen co-doped hierarchical porous carbon. Food Chem 363:130385

    Article  CAS  Google Scholar 

  12. Vilian ATE, Umapathi R, Hwang SK, Huh YS, Han YK (2021) Pd-Cu nanospheres supported on Mo2C for the electrochemical sensing of nitrites. J Hazard Mater 408:124914

    Article  CAS  Google Scholar 

  13. Li JH, Liu JL, Tan GR, Jiang JB, Peng SJ, Deng M, Qian D, Feng YL, Liu YC (2014) High-sensitivity paracetamol sensor based on Pd/graphene oxide nanocomposite as an enhanced electrochemical sensing platform. Biosens Bioelectron 54:468–475

    Article  CAS  Google Scholar 

  14. Qu L, Yang L, Ren Y, Ren X, Fan DW, Xu K, Wang H, Li YY, Ju HX, Wei Q (2020) A signal-off electrochemical sensing platform based on Fe3S4-Pd and pineal mesoporous bioactive glass for procalcitonin detection. Sens Actuators B Chem 320:128324

    Article  CAS  Google Scholar 

  15. Zhang H, Jin MS, Xia YN (2012) Enhancing the catalytic and electrocatalytic properties of Pt-based catalysts by forming bimetallic nanocrystals with Pd. Chem Soc Rev 41:8035–8049

    Article  CAS  Google Scholar 

  16. Shankar SS, Shereema RM, Rakhi RB (2018) Electrochemical determination of adrenaline using MXene/graphite composite paste electrodes. ACS Appl Mater Interfaces 10:43343–43351

    Article  CAS  Google Scholar 

  17. Xie Y, Gao F, Tu XL, Ma X, Xu Q, Dai RY, Huang XG, Yu YF, Lu LM (2019) Facile synthesis of MXene/electrochemically reduced graphene oxide composites and their application for electrochemical sensing of carbendazim. J Electrochem Soc 166:B1673–B1680

    Article  CAS  Google Scholar 

  18. VahidMohammadi A, Rosen J, Gogotsi Y (2021) The world of two-dimensional carbides and nitrides (MXenes). Science 372:6547

    Article  Google Scholar 

  19. Dong YY, Yang LJ, Zhang L (2017) Simultaneous electrochemical detection of benzimidazole fungicides carbendazim and thiabendazole using a novel nanohybrid material-modified electrode. J Agr Food Chem 65:727–736

    Article  CAS  Google Scholar 

  20. Zheng HT, Matseke MS, Munonde TS (2019) The unique Pd@Pt/C core-shell nanoparticles as methanol-tolerant catalysts using sonochemical synthesis. Ultrason Sonochem 57:166–171

    Article  CAS  Google Scholar 

  21. Gao L, Yue RR, Xu JK, Liu Z, Chai JD (2018) Pt-PEDOT/rGO nanocomposites: one-pot preparation and superior electrochemical sensing performance for caffeic acid in tea. J Electroanal Chem 816:14–20

    Article  CAS  Google Scholar 

  22. Pumera M, Ambrosi A, Bonanni A, Chng ELK, Poh HL (2010) Graphene for electrochemical sensing and biosensing. Trac-trend Anal Chem 29:954–965

    Article  CAS  Google Scholar 

  23. Alim S, Vejayan J, Yusoff MM, Kafi AKM (2018) Recent uses of carbon nanotubes & gold nanoparticles in electrochemistry with application in biosensing: a review. Biosens Bioelectron 121:125–136

    Article  CAS  Google Scholar 

  24. Wang XG, Li J, Fan YJ (2010) Fast detection of catechin in tea beverage using a poly-aspartic acid film based sensor. Microchim Acta 169:173–179

    Article  CAS  Google Scholar 

  25. Deng PH, Xu ZF, Zeng RY, Ding CX (2015) Electrochemical behavior and voltammetric determination of vanillin based on an acetylene black paste electrode modified with graphene-polyvinylpyrrolidone composite film. Food Chem 180:156–163

    Article  CAS  Google Scholar 

  26. Li YG, Gao Y, Cao Y, Li HM (2012) Electrochemical sensor for bisphenol a determination based on MWCNT/melamine complex modified GCE. Sens Actuators B Chem 171:726–733

    Article  Google Scholar 

  27. Liu AL, Zhang SB, Huang LY, Cao YY, Yao H, Chen W, Lin XH (2008) Electrochemical oxidation of luteolin at a glassy carbon electrode and its application in pharmaceutical analysis. Chem Pharm Bull 56:745–748

    Article  CAS  Google Scholar 

  28. Li XB, Zou RY, Niu YY, Sun W, Shao TM, Chen XQ (2018) Gold nanocage-based electrochemical sensing platform for sensitive detection of luteolin. Sensors 18:2309

    Article  Google Scholar 

  29. Ibrahim H, Temerk Y (2015) Novel sensor for sensitive electrochemical determination of luteolin based on In2O3 nanoparticles modified glassy carbon paste electrode. Sens Actuators B Chem 206:744–752

    Article  CAS  Google Scholar 

  30. Tesio AY, Granero AM, Vettorazzi NR, Ferreyra NF, Rivas GA, Fernandez H, Zon MA (2014) Development of an electrochemical sensor for the determination of the flavonoid luteolin in peanut hull samples. Microchem J 115:100–105

    Article  CAS  Google Scholar 

  31. Xu BJ, Zhang BH, Yang LT, Zhao FQ, Zeng BZ (2017) Electrochemical determination of luteolin using molecularly imprinted poly-carbazole on MoS2/graphene-carbon nanotubes nanocomposite modified electrode. Electrochim Acta 258:1413–1420

    Article  CAS  Google Scholar 

  32. Pang PF, Liu YP, Zhang YL, Gao YT, Hu QF (2014) Electrochemical determination of luteolin in peanut hulls using graphene and hydroxyapatite nanocomposite modified electrode. Sens Actuators B Chem 194:397–403

    Article  CAS  Google Scholar 

  33. Cao MY, Yin XD, Bo XJ, Guo LP (2018) High-performance electrocatalyst based on metal-organic framework/macroporous carbon composite for efficient detection of luteolin. J Electroanal Chem 824:153–160

    Article  CAS  Google Scholar 

  34. Tang J, Jin B (2016) Poly (crystal violet)-multi-walled carbon nanotubes modified electrode for electroanalytical determination of luteolin. J Electroanal Chem 780:46–52

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (52073128, 51863009, and 51502118), the Academic and Technical Leader Plan of Jiangxi Provincial Main Disciplines (20182BCB22014), the Provincial Natural Science Foundation of Jiangxi (20161BAB216131), the Jiangxi Science and Technology Normal University Program for Scientific Research Innovation Team (YC2021-S755), the Jiangxi Key Laboratory of Flexible Electronics (20212BCD42004), and the Key Laboratory of Photochemical Conversion and Optoelectronic Materials, TIPC, Chinese Academy of Science.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruirui Yue or Jingkun Xu.

Ethics declarations

Funding

National Natural Science Foundation of China, 52073128, Jingkun Xu, 51863009, Jingkun Xu, 51502118, Ruirui Yue, Academic and Technical Leader Plan of Jiangxi Provincial Main Disciplines, 20182BCB22014, Jingkun Xu, Provincial Natural Science Foundation of Jiangxi, 20161BAB216131, Ruirui Yue, Jiangxi Science & Technology Normal University Program for Scientific Research Innovation Team, YC2021-S755, Hui Huang

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3394 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Xie, S., Deng, L. et al. Fabrication of rGO/MXene-Pd/rGO hierarchical framework as high-performance electrochemical sensing platform for luteolin detection. Microchim Acta 189, 59 (2022). https://doi.org/10.1007/s00604-021-05132-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-05132-1

Keywords

Navigation