Skip to main content

Advertisement

Log in

Recent advances in electrochemiluminescence luminophores

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Electrochemiluminescence (ECL) has continued to receive considerable attention in various applications, owing to its intrinsic advantages such as near-zero background response, wide dynamic range, high sensitivity, simple instrumentation, and low cost. The ECL luminophore is one of the most significant components during the light generation processes. Despite significant progress that has been made in the synthesis of new luminophores and their roles in resolving various challenges, there are few comprehensive summaries on ECL luminophores. In this review, we discuss some of the recent advances in organic, metal complexes, nanomaterials, metal oxides, and near-infrared ECL luminophores. We also emphasize their roles in tackling various challenges with illustrative examples that have been reported in the last few years. Finally, perspective and some unresolved challenges in ECL that can potentially be addressed by introducing new luminophores have also been discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Delaney JL, Hogan CF. Mobile phone based electrochemiluminescence detection in paper-based microfluidic sensors. Methods Mol Biol. 2015;1256:277–89. https://doi.org/10.1007/978-1-4939-2172-0_19.

    Article  CAS  PubMed  Google Scholar 

  2. Li Z, Qin W, Liang G. A mass-amplifying electrochemiluminescence film (MAEF) for the visual detection of dopamine in aqueous media. Nanoscale. 2020;12(16):8828–35. https://doi.org/10.1039/D0NR01025A.

    Article  CAS  PubMed  Google Scholar 

  3. Li Y, Ma X, Wang W, Yan S, Liu F, Chu K, et al. Improving the limit of detection in portable luminescent assay readers through smart optical design. J Biophotonics. 2020;13(1):e201900241. https://doi.org/10.1002/jbio.201900241.

    Article  PubMed  Google Scholar 

  4. Arora A, Eijkel JCT, Morf WE, Manz A. A wireless electrochemiluminescence detector applied to direct and indirect detection for electrophoresis on a microfabricated glass device. Anal Chem. 2001;73(14):3282–8. https://doi.org/10.1021/ac0100300.

    Article  CAS  PubMed  Google Scholar 

  5. Werner TC, Chang J, Hercules DM. Electrochemiluminescence of anthracene and 9,10-dimethylanthracene. Role of direct excimer formation. J Am Chem Soc. 1970;92(4):763–8. https://doi.org/10.1021/ja00707a004.

    Article  CAS  Google Scholar 

  6. Faulkner LR, Bard AJ. Electrogenerated chemiluminescence. I. Mechanism of anthracene chemiluminescence in N,N-dimethylformamide solution. J Am Chem Soc. 1968;90(23):6284–90. https://doi.org/10.1021/ja01025a006.

    Article  CAS  Google Scholar 

  7. Faulkner LR, Bard AJ. Electrogenerated chemiluminescence. IV. Magnetic field effects on the electrogenerated chemiluminescence of some anthracene. J Am Chem Soc. 1969;91(1):209–10. https://doi.org/10.1021/ja01029a049.

    Article  CAS  Google Scholar 

  8. Keszthelyi CP, Tokel-Takvoryan NE, Bard AJ. Electrogenerated chemiluminescence. Determination of absolute luminescence efficiency in electrogenerated chemiluminescence. 9,10-Diphenylanthracene-thianthrene and other systems. Anal Chem. 1975;47(2):249–56. https://doi.org/10.1021/ac60352a046.

    Article  CAS  Google Scholar 

  9. Liu J-L, Tang Z-L, Zhuo Y, Chai Y-Q, Yuan R. Ternary Electrochemiluminescence system based on Rubrene microrods as Luminophore and Pt Nanomaterials as Coreaction accelerator for ultrasensitive detection of MicroRNA from Cancer cells. Anal Chem. 2017;89(17):9108–15. https://doi.org/10.1021/acs.analchem.7b01812.

    Article  CAS  PubMed  Google Scholar 

  10. Maricle DL, Maurer A. Pre-annihilation Electrochemiluminescence of Rubrene. J Am Chem Soc. 1967;89(1):188–9. https://doi.org/10.1021/ja00977a063.

    Article  CAS  Google Scholar 

  11. Sooambar C, Troiani V, Bruno C, Marcaccio M, Paolucci F, Listorti A, et al. Synthesis, photophysical, electrochemical, and electrochemiluminescent properties of 5,15-bis(9-anthracenyl)porphyrin derivatives. Org Biomol Chem. 2009;7(11):2402–13. https://doi.org/10.1039/B820210A.

    Article  CAS  PubMed  Google Scholar 

  12. Omer KM, Ku S-Y, Wong K-T, Bard AJ. Efficient and stable blue electrogenerated chemiluminescence of fluorene-substituted aromatic hydrocarbons. Angew Chem Int Ed. 2009;48(49):9300–3. https://doi.org/10.1002/anie.200904156.

    Article  CAS  Google Scholar 

  13. Cruser SA, Bard AJ. Electrogenerated chemiluminescence. III. Intensity-time and concentration-intensity relation and the lifetime of radical cations of aromatic hydrocarbons in N,N-dimethylformamide solution. J Am Chem Soc. 1969;91(2):267–75. https://doi.org/10.1021/ja01030a010.

    Article  CAS  Google Scholar 

  14. Chandross EA, Longworth JW, Visco RE. Excimer formation and emission via the annihilation of electrogenerated aromatic hydrocarbon radical cations and anions. J Am Chem Soc. 1965;87(14):3259–60. https://doi.org/10.1021/ja01092a054.

    Article  CAS  Google Scholar 

  15. Maloy JT, Bard AJ. Electrogenerated chemiluminescence. VI. Efficiency and mechanisms of 9,10-diphenylanthracene, rubrene, and pyrene systems at a rotating-ring-disk electrode. J Am Chem Soc. 1971;93(23):5968–81. https://doi.org/10.1021/ja00752a004.

    Article  CAS  Google Scholar 

  16. Faulkner LR, Tachikawa H, Bard AJ. Electrogenerated chemiluminescence. VII. Influences of external magnetic field on luminescence intensity. J Am Chem Soc. 1972;94(3):691–9. https://doi.org/10.1021/ja00758a001.

    Article  CAS  Google Scholar 

  17. Hu L, Xu G. Applications and trends in electrochemiluminescence. Chem Soc Rev. 2010;39(8):3275–304. https://doi.org/10.1039/B923679C.

    Article  CAS  PubMed  Google Scholar 

  18. Richter MM. Electrochemiluminescence (ECL). Chem Rev. 2004;104(6):3003–36. https://doi.org/10.1021/cr020373d.

    Article  CAS  PubMed  Google Scholar 

  19. Truong CKP, Nguyen TDD, Shin I-S. Electrochemiluminescent chemosensors for clinical applications: a review. BioChip J. 2019;13(3):203–16. https://doi.org/10.1007/s13206-019-3301-9.

    Article  CAS  Google Scholar 

  20. Liu Z, Qi W, Xu G. Recent advances in electrochemiluminescence. Chem Soc Rev. 2015;44(10):3117–42. https://doi.org/10.1039/C5CS00086F.

    Article  CAS  PubMed  Google Scholar 

  21. Li Q, Zhang C, Zheng JY, Zhao YS, Yao J. Electrogenerated upconverted emission from doped organic nanowires. Chem Commun. 2012;48(1):85–7. https://doi.org/10.1039/C1CC15632B.

    Article  Google Scholar 

  22. Suk J, Bard AJ. Electrochemistry and electrogenerated chemiluminescence of organic nanoparticles. J Solid State Electrochem. 2011;15(11):2279–91. https://doi.org/10.1007/s10008-011-1449-x.

    Article  CAS  Google Scholar 

  23. Dick JE, Renault C, Kim B-K, Bard AJ. Electrogenerated chemiluminescence of common organic luminophores in water using an emulsion system. J Am Chem Soc. 2014;136(39):13546–9. https://doi.org/10.1021/ja507198r.

    Article  CAS  PubMed  Google Scholar 

  24. Dini D. Electrochemiluminescence from organic emitters. Chem Mater. 2005;17(8):1933–45. https://doi.org/10.1021/cm049567v.

    Article  CAS  Google Scholar 

  25. Kasahara T, Matsunami S, Edura T, Ishimatsu R, Oshima J, Tsuwaki M, et al. Multi-color microfluidic electrochemiluminescence cells. Sens Actuator A Phys. 2014;214:225–9. https://doi.org/10.1016/j.sna.2014.04.039.

    Article  CAS  Google Scholar 

  26. Zhao M, Bai L, Cheng W, Duan X, Wu H, Ding S. Monolayer rubrene functionalized graphene-based eletrochemiluminescence biosensor for serum cystatin C detection with immunorecognition-induced 3D DNA machine. Biosens Bioelectron. 2019;127:126–34. https://doi.org/10.1016/j.bios.2018.12.009.

    Article  CAS  PubMed  Google Scholar 

  27. Rodríguez-López J, Shen M, Nepomnyashchii AB, Bard AJ. Scanning electrochemical microscopy study of ion annihilation electrogenerated chemiluminescence of rubrene and [Ru(bpy)3]2+. J Am Chem Soc. 2012;134(22):9240–50. https://doi.org/10.1021/ja301016n.

    Article  CAS  PubMed  Google Scholar 

  28. Kapturkiewicz A. Solvent and temperature control of the reaction mechanism and efficiency in the electrogenerated chemiluminescence of rubrene. J Electroanal Chem. 1994;372(1):101–16. https://doi.org/10.1016/0022-0728(94)03297-1.

    Article  CAS  Google Scholar 

  29. Gu J, Gao Y, Wu J, Li Q, Li A, Zhang W, et al. Polymorph-dependent electrogenerated chemiluminescence of low-dimensional organic semiconductor structures for sensing. ACS Appl Mater Interfaces. 2017;9(10):8891–9. https://doi.org/10.1021/acsami.6b16118.

    Article  CAS  PubMed  Google Scholar 

  30. Harvey N. Luminescence during electrolysis. J Phys Chem. 1929;33(10):1456–9. https://doi.org/10.1021/j150304a002.

    Article  CAS  Google Scholar 

  31. Kitte SA, Gao W, Zholudov YT, Qi L, Nsabimana A, Liu Z, et al. Stainless steel electrode for sensitive luminol electrochemiluminescent detection of H2O2, glucose, and glucose oxidase activity. Anal Chem. 2017;89(18):9864–9. https://doi.org/10.1021/acs.analchem.7b01939.

    Article  CAS  PubMed  Google Scholar 

  32. Cui H, Zou G-Z, Lin X-Q. Electrochemiluminescence of luminol in alkaline solution at a paraffin-impregnated graphite electrode. Anal Chem. 2003;75(2):324–31. https://doi.org/10.1021/ac0201631.

    Article  CAS  PubMed  Google Scholar 

  33. Du F, Ma X, Yuan F, Wang C, Snizhko D, Guan Y, et al. Sonochemiluminescence based on a small, cheap, and low-power USB mesh-type piezoelectric ultrasonic transducer. Anal Chem. 2020;92(7):4755–9. https://doi.org/10.1021/acs.analchem.0c00042.

    Article  CAS  PubMed  Google Scholar 

  34. Skripnikova TA, Lysova SS, Zevatskii YE, Myznikov LV, Vorona SV, Artamonova TV. Physico-chemical properties of isomeric forms of luminol in aqueous solutions. J Mol Struct. 2018;1154:59–63. https://doi.org/10.1016/j.molstruc.2017.10.004.

    Article  CAS  Google Scholar 

  35. Mayer M, Takegami S, Neumeier M, Rink S, Jacobi von Wangelin A, Schulte S, et al. Electrochemiluminescence bioassays with a water-soluble luminol derivative can outperform fluorescence assays. Angew Chem Int Ed. 2018;57(2):408–11. https://doi.org/10.1002/anie.201708630.

    Article  CAS  Google Scholar 

  36. Rizzo F, Polo F, Bottaro G, Fantacci S, Antonello S, Armelao L, et al. From blue to green: fine-tuning of photoluminescence and electrochemiluminescence in bifunctional organic dyes. J Am Chem Soc. 2017;139(5):2060–9. https://doi.org/10.1021/jacs.6b12247.

    Article  CAS  PubMed  Google Scholar 

  37. Kudruk S, Villani E, Polo F, Lamping S, Körsgen M, Arlinghaus HF, et al. Solid state electrochemiluminescence from homogeneous and patterned monolayers of bifunctional spirobifluorene. Chem Commun. 2018;54(39):4999–5002. https://doi.org/10.1039/C8CC02066C.

    Article  CAS  Google Scholar 

  38. Kanibolotsky AL, Perepichka IF, Skabara PJ. Star-shaped π-conjugated oligomers and their applications in organic electronics and photonics. Chem Soc Rev. 2010;39(7):2695–728. https://doi.org/10.1039/B918154G.

    Article  CAS  PubMed  Google Scholar 

  39. Kanibolotsky AL, Berridge R, Skabara PJ, Perepichka IF, Bradley DDC, Koeberg M. Synthesis and properties of monodisperse oligofluorene-functionalized truxenes: highly fluorescent star-shaped architectures. J Am Chem Soc. 2004;126(42):13695–702. https://doi.org/10.1021/ja039228n.

    Article  CAS  PubMed  Google Scholar 

  40. Komiyama H, Adachi C, Yasuda T. Star-shaped and linear π-conjugated oligomers consisting of a tetrathienoanthracene core and multiple diketopyrrolopyrrole arms for organic solar cells. Beilstein J Org Chem. 2016;12:1459–66. https://doi.org/10.3762/bjoc.12.142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ren S, Zeng D, Zhong H, Wang Y, Qian S, Fang Q. Star-shaped donor-π-acceptor conjugated oligomers with 1,3,5-triazine cores: convergent synthesis and multifunctional properties. J Phys Chem B. 2010;114(32):10374–83. https://doi.org/10.1021/jp104710y.

    Article  CAS  PubMed  Google Scholar 

  42. Santi S, Rossi S. Molecular design of star-shaped benzotrithiophene materials for organic electronics. Tetrahedron Lett. 2019;60(36):151021. https://doi.org/10.1016/j.tetlet.2019.151021.

    Article  CAS  Google Scholar 

  43. Jiang Y, Fang M, Chang S-J, Huang J-J, Chu S-Q, Hu S-M, et al. Towards monodisperse star-shaped ladder-type conjugated systems: design, synthesis, stabilized blue electroluminescence, and amplified spontaneous emission. Chem Eur J. 2017;23(23):5448–58. https://doi.org/10.1002/chem.201605885.

    Article  CAS  PubMed  Google Scholar 

  44. Yasuda T, Shimizu T, Liu F, Ungar G, Kato T. Electro-functional octupolar π-conjugated columnar liquid crystals. J Am Chem Soc. 2011;133(34):13437–44. https://doi.org/10.1021/ja2035255.

    Article  CAS  PubMed  Google Scholar 

  45. Qi H, Zhang C, Huang Z, Wang L, Wang W, Bard AJ. Electrochemistry and electrogenerated chemiluminescence of 1,3,5-tri(anthracen-10-yl)-benzene-centered starburst oligofluorenes. J Am Chem Soc. 2016;138(6):1947–54. https://doi.org/10.1021/jacs.5b12184.

    Article  CAS  PubMed  Google Scholar 

  46. Abdussalam A, Yuan F, Ma X, Du F, Zholudov YT, Zafar MN, et al. Tris(2,2′-bipyridine)ruthenium(II) electrochemiluminescence using rongalite as coreactant and its application in detection of foodstuff adulteration. J Electroanal Chem. 2020;857:113752. https://doi.org/10.1016/j.jelechem.2019.113752.

    Article  CAS  Google Scholar 

  47. Yuan F, Halawa MI, Ma X, Abdussalam A, Lou B, Xu G. Electrochemiluminescence of Ru(bpy)32+/oxamic hydrazide and its application for selective detection of 4-nitrobenzaldehyde. ChemElectroChem. 2020;7(20):4239–44. https://doi.org/10.1002/celc.202001140.

    Article  CAS  Google Scholar 

  48. Venkateswara Raju C, Senthil KS. Highly sensitive novel cathodic electrochemiluminescence of tris(2,2′-bipyridine)ruthenium(ii) using glutathione as a co-reactant. Chem Commun. 2017;53(49):6593–6. https://doi.org/10.1039/C7CC03349D.

    Article  CAS  Google Scholar 

  49. Abdussalam A, Guan Y, Xu G. Amplified anodic electrogenerated chemiluminescence of tris(2,2′-bipyridyl)ruthenium(II) for the sensitive detection of isatin. ChemElectroChem. 2020;7(5):1207–12. https://doi.org/10.1002/celc.201902148.

    Article  CAS  Google Scholar 

  50. Qi W, Wu D, Zhao J, Liu Z, Zhang W, Zhang L, et al. Electrochemiluminescence resonance energy transfer based on Ru(phen)32+-doped silica nanoparticles and its application in “turn-on” detection of ozone. Anal Chem. 2013;85(6):3207–12. https://doi.org/10.1021/ac303533m.

    Article  CAS  PubMed  Google Scholar 

  51. Majuran M, Armendariz-Vidales G, Carrara S, Haghighatbin MA, Spiccia L, Barnard PJ, et al. Near-infrared electrochemiluminescence from bistridentate ruthenium(II) di(quinoline-8-yl)pyridine complexes in aqueous media. ChemPlusChem. 2020;85(2):346–52. https://doi.org/10.1002/cplu.201900637.

    Article  CAS  PubMed  Google Scholar 

  52. Juzgado A, Soldà A, Ostric A, Criado A, Valenti G, Rapino S, et al. Highly sensitive electrochemiluminescence detection of a prostate cancer biomarker. J Mater Chem B. 2017;5(32):6681–7. https://doi.org/10.1039/C7TB01557G.

    Article  CAS  PubMed  Google Scholar 

  53. Dennany L, Forster RJ, White B, Smyth M, Rusling JF. Direct electrochemiluminescence detection of oxidized DNA in ultrathin films containing [Os(bpy)2(PVP)10]2+. J Am Chem Soc. 2004;126(28):8835–41. https://doi.org/10.1021/ja048615+.

    Article  CAS  PubMed  Google Scholar 

  54. Li C, Wang S, Huang Y, Zheng B, Tian Z, Wen Y, et al. Synthesis, characterization and electrochemiluminescent properties of cyclometalated platinum(ii) complexes with substituted 2-phenylpyridine ligands. Dalton Trans. 2013;42(11):4059–67. https://doi.org/10.1039/C2DT32466K.

    Article  CAS  PubMed  Google Scholar 

  55. Quan LM, Stringer BD, Haghighatbin MA, Agugiaro J, Barbante GJ, Wilson DJD, et al. Tuning the electrochemiluminescent properties of iridium complexes of N-heterocyclic carbene ligands. Dalton Trans. 2019;48(2):653–63. https://doi.org/10.1039/C8DT04433C.

    Article  CAS  PubMed  Google Scholar 

  56. Doeven EH, Zammit EM, Barbante GJ, Francis PS, Barnett NW, Hogan CF. A potential-controlled switch on/off mechanism for selective excitation in mixed electrochemiluminescent systems. Chem Sci. 2013;4(3):977–82. https://doi.org/10.1039/C2SC21707D.

    Article  CAS  Google Scholar 

  57. Han F, Jiang H, Fang D, Jiang D. Potential-resolved electrochemiluminescence for determination of two antigens at the cell surface. Anal Chem. 2014;86(14):6896–902. https://doi.org/10.1021/ac501571a.

    Article  CAS  PubMed  Google Scholar 

  58. Zhou B, Zhu M, Hao Y, Yang P. Potential-resolved electrochemiluminescence for simultaneous determination of triple latent tuberculosis infection markers. ACS Appl Mater Interfaces. 2017;9(36):30536–42. https://doi.org/10.1021/acsami.7b10343.

    Article  CAS  PubMed  Google Scholar 

  59. Zhou J, Nie L, Zhang B, Zou G. Spectrum-resolved triplex-color electrochemiluminescence multiplexing immunoassay with highly-passivated nanocrystals as tags. Anal Chem. 2018;90(21):12361–5. https://doi.org/10.1021/acs.analchem.8b04424.

    Article  CAS  PubMed  Google Scholar 

  60. Guo W, Ding H, Gu C, Liu Y, Jiang X, Su B, et al. Potential-resolved multicolor electrochemiluminescence for multiplex immunoassay in a single sample. J Am Chem Soc. 2018;140(46):15904–15. https://doi.org/10.1021/jacs.8b09422.

    Article  CAS  PubMed  Google Scholar 

  61. Carrara S, Aliprandi A, Hogan CF, De Cola L. Aggregation-induced electrochemiluminescence of platinum(II) complexes. J Am Chem Soc. 2017;139(41):14605–10. https://doi.org/10.1021/jacs.7b07710.

    Article  CAS  PubMed  Google Scholar 

  62. Jiang X, Wang H, Wang H, Yuan R, Chai Y. Signal-switchable electrochemiluminescence system coupled with target recycling amplification strategy for sensitive mercury ion and mucin 1 assay. Anal Chem. 2016;88(18):9243–50. https://doi.org/10.1021/acs.analchem.6b02501.

    Article  CAS  PubMed  Google Scholar 

  63. Wang H, Yuan Y, Zhuo Y, Chai Y, Yuan R. Self-enhanced electrochemiluminescence nanorods of tris(bipyridine) ruthenium(II) derivative and its sensing application for detection of N-acetyl-β-d-glucosaminidase. Anal Chem. 2016;88(4):2258–65. https://doi.org/10.1021/acs.analchem.5b03954.

    Article  CAS  PubMed  Google Scholar 

  64. Cai J, Chen T, Xu Y, Wei S, Huang W, Liu R, et al. A versatile signal-enhanced ECL sensing platform based on molecular imprinting technique via PET-RAFT cross-linking polymerization using bifunctional ruthenium complex as both catalyst and sensing probes. Biosens Bioelectron. 2019;124–125:15–24. https://doi.org/10.1016/j.bios.2018.09.083.

    Article  CAS  PubMed  Google Scholar 

  65. Fang T-T, Li X, Wang Q-S, Zhang Z-J, Liu P, Zhang C-C. Toxicity evaluation of CdTe quantum dots with different size on Escherichia coli. Toxicol in Vitro. 2012;26(7):1233–9. https://doi.org/10.1016/j.tiv.2012.06.001.

    Article  CAS  PubMed  Google Scholar 

  66. Tatsi K, Hutchinson TH, Handy RD. Consequences of surface coatings and soil ageing on the toxicity of cadmium telluride quantum dots to the earthworm Eisenia fetida. Ecotoxicol Environ Saf. 2020;201:110813. https://doi.org/10.1016/j.ecoenv.2020.110813.

    Article  CAS  PubMed  Google Scholar 

  67. Zhao M, Chen A-Y, Huang D, Chai Y-Q, Zhuo Y, Yuan R. MoS2 quantum dots as new electrochemiluminescence emitters for ultrasensitive bioanalysis of lipopolysaccharide. Anal Chem. 2017;89(16):8335–42. https://doi.org/10.1021/acs.analchem.7b01558.

    Article  CAS  PubMed  Google Scholar 

  68. Lei Y-M, Zhou J, Chai Y-Q, Zhuo Y, Yuan R. SnS2 quantum dots as new emitters with strong electrochemiluminescence for ultrasensitive antibody detection. Anal Chem. 2018;90(20):12270–7. https://doi.org/10.1021/acs.analchem.8b03623.

    Article  CAS  PubMed  Google Scholar 

  69. Chen L, Huang D, Ren S, Dong T, Chi Y, Chen G. Preparation of graphite-like carbon nitride nanoflake film with strong fluorescent and electrochemiluminescent activity. Nanoscale. 2013;5(1):225–30. https://doi.org/10.1039/C2NR32248J.

    Article  CAS  PubMed  Google Scholar 

  70. Wang Y-Z, Hao N, Feng Q-M, Shi H-W, Xu J-J, Chen H-Y. A ratiometric electrochemiluminescence detection for cancer cells using g-C3N4 nanosheets and Ag–PAMAM–luminol nanocomposites. Biosens Bioelectron. 2016;77:76–82. https://doi.org/10.1016/j.bios.2015.08.057.

    Article  CAS  PubMed  Google Scholar 

  71. Chen L, Zeng X, Si P, Chen Y, Chi Y, Kim D-H, et al. Gold nanoparticle-graphite-like C3N4 nanosheet nanohybrids used for electrochemiluminescent immunosensor. Anal Chem. 2014;86(9):4188–95. https://doi.org/10.1021/ac403635f.

    Article  CAS  PubMed  Google Scholar 

  72. Zhou C, Chen Y, Shang P, Chi Y. Strong electrochemiluminescent interactions between carbon nitride nanosheet–reduced graphene oxide nanohybrids and folic acid, and ultrasensitive sensing for folic acid. Analyst. 2016;141(11):3379–88. https://doi.org/10.1039/C6AN00664G.

    Article  CAS  PubMed  Google Scholar 

  73. Zhai Q, Xing H, Zhang X, Li J, Wang E. Enhanced electrochemiluminescence behavior of gold–silver bimetallic nanoclusters and its sensing application for mercury(II). Anal Chem. 2017;89(14):7788–94. https://doi.org/10.1021/acs.analchem.7b01897.

    Article  CAS  PubMed  Google Scholar 

  74. Peng H, Huang Z, Deng H, Wu W, Huang K, Li Z, et al. Dual enhancement of gold nanocluster electrochemiluminescence: electrocatalytic excitation and aggregation-induced emission. Angew Chem Int Ed. 2020;59(25):9982–5. https://doi.org/10.1002/anie.201913445.

    Article  CAS  Google Scholar 

  75. Xu Y, Yin X-B, He X-W, Zhang Y-K. Electrochemistry and electrochemiluminescence from a redox-active metal-organic framework. Biosens Bioelectron. 2015;68:197–203. https://doi.org/10.1016/j.bios.2014.12.031.

    Article  CAS  PubMed  Google Scholar 

  76. Ma H, Li X, Yan T, Li Y, Liu H, Zhang Y, et al. Electrogenerated chemiluminescence behavior of Au nanoparticles-hybridized Pb (II) metal-organic framework and its application in selective sensing hexavalent chromium. Sci Rep. 2016;6:22059. https://doi.org/10.1038/srep22059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Jin Z, Zhu X, Wang N, Li Y, Ju H, Lei J. Electroactive metal–organic frameworks as emitters for self-enhanced electrochemiluminescence in aqueous medium. Angew Chem Int Ed. 2020;59(26):10446–50. https://doi.org/10.1002/anie.202002713.

    Article  CAS  Google Scholar 

  78. Kafizas A, Noor N, Carmalt CJ, Parkin IP. TiO2-based transparent conducting oxides; the search for optimum electrical conductivity using a combinatorial approach. J Mater Chem C. 2013;1(39):6335–46. https://doi.org/10.1039/C3TC31472C.

    Article  CAS  Google Scholar 

  79. Deng W, Chu C, Ge S, Yu J, Yan M, Song X. Electrochemiluminescence PSA assay using an ITO electrode modified with gold and palladium, and flower-like titanium dioxide microparticles as ECL labels. Microchim Acta. 2015;182(5):1009–16. https://doi.org/10.1007/s00604-014-1423-2.

    Article  CAS  Google Scholar 

  80. Han Z, Shu J, Liang X, Cui H. Label-free ratiometric electrochemiluminescence aptasensor based on nanographene oxide wrapped titanium dioxide nanoparticles with potential-resolved electrochemiluminescence. Anal Chem. 2019;91(19):12260–7. https://doi.org/10.1021/acs.analchem.9b02318.

    Article  CAS  PubMed  Google Scholar 

  81. Dai P-P, Yu T, Shi H-W, Xu J-J, Chen H-Y. General strategy for enhancing electrochemiluminescence of semiconductor nanocrystals by hydrogen peroxide and potassium persulfate as dual coreactants. Anal Chem. 2015;87(24):12372–9. https://doi.org/10.1021/acs.analchem.5b03890.

    Article  CAS  PubMed  Google Scholar 

  82. Jiang M-H, Lu P, Lei Y-M, Chai Y-Q, Yuan R, Zhuo Y. Self-accelerated electrochemiluminescence emitters of Ag@SnO2 nanoflowers for sensitive detection of cardiac troponin T. Electrochim Acta. 2018;271:464–71. https://doi.org/10.1016/j.electacta.2018.03.177.

    Article  CAS  Google Scholar 

  83. Lei Y-M, Zhuo Y, Guo M-L, Chai Y-Q, Yuan R. Pore confinement-enhanced electrochemiluminescence on SnO2 nanocrystal xerogel with NO3 as co-reactant and its application in facile and sensitive bioanalysis. Anal Chem. 2020;92(3):2839–46. https://doi.org/10.1021/acs.analchem.9b05367.

    Article  CAS  PubMed  Google Scholar 

  84. Yang F, Yang F, Tu T-T, Liao N, Chai Y-Q, Yuan R, et al. A synergistic promotion strategy remarkably accelerated electrochemiluminescence of SnO2 QDs for microRNA detection using 3D DNA walker amplification. Biosens Bioelectron. 2021;173:112820. https://doi.org/10.1016/j.bios.2020.112820.

    Article  CAS  Google Scholar 

  85. Zhang R, Chen A, Yu Y, Chai Y, Zhuo Y, Yuan R. Electrochemiluminescent carbon dot-based determination of microRNA-21 by using a hemin/G-wire supramolecular nanostructure as co-reaction accelerator. Microchim Acta. 2018;185(9):432. https://doi.org/10.1007/s00604-018-2959-3.

    Article  CAS  Google Scholar 

  86. Wang X, Yu L, Kang Q, Chen L, Jin Y, Zou G, et al. Enhancing electrochemiluminescence of FAPbBr3 nanocrystals by using carbon nanotubes and TiO2 nanoparticles as conductivity and co-reaction accelerator for dopamine determination. Electrochim Acta. 2020;360:136992. https://doi.org/10.1016/j.electacta.2020.136992.

    Article  CAS  Google Scholar 

  87. Jiang D, Du X, Liu Q, Zhou L, Qian J, Wang K. One-step thermal-treatment route to fabricate well-dispersed ZnO nanocrystals on nitrogen-doped graphene for enhanced electrochemiluminescence and ultrasensitive detection of pentachlorophenol. ACS Appl Mater Interfaces. 2015;7(5):3093–100. https://doi.org/10.1021/am507163z.

    Article  CAS  PubMed  Google Scholar 

  88. Ghosh Chaudhuri R, Paria S. Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev. 2012;112(4):2373–433. https://doi.org/10.1021/cr100449n.

    Article  CAS  PubMed  Google Scholar 

  89. Liang G-X, Li L-L, Liu H-Y, Zhang J-R, Burda C, Zhu J-J. Fabrication of near-infrared-emitting CdSeTe/ZnS core/shell quantum dots and their electrogenerated chemiluminescence. Chem Commun. 2010;46(17):2974–6. https://doi.org/10.1039/C000564A.

    Article  CAS  Google Scholar 

  90. Wang J, Jiang X, Han H, Li N. Cathodic electrochemiluminescence from self-designed near-infrared-emitting CdTe/CdS/ZnS quantum dots on bare Au electrode. Electrochem Commun. 2011;13(4):359–62. https://doi.org/10.1016/j.elecom.2011.01.024.

    Article  CAS  Google Scholar 

  91. Reiss P, Protière M, Li L. Core/shell semiconductor nanocrystals. Small. 2009;5(2):154–68. https://doi.org/10.1002/smll.200800841.

    Article  CAS  PubMed  Google Scholar 

  92. Liang G, Shen L, Zou G, Zhang X. Efficient near-infrared electrochemiluminescence from CdTe nanocrystals with low triggering potential and ultrasensitive sensing ability. Chem Eur J. 2011;17(37):10213–5. https://doi.org/10.1002/chem.201101154.

    Article  CAS  PubMed  Google Scholar 

  93. Swanick KN, Hesari M, Workentin MS, Ding Z. Interrogating near-infrared electrogenerated chemiluminescence of Au25(SC2H4Ph)18+ clusters. J Am Chem Soc. 2012;134(37):15205–8. https://doi.org/10.1021/ja306047u.

    Article  CAS  PubMed  Google Scholar 

  94. Hesari M, Workentin MS, Ding Z. NIR electrochemiluminescence from Au25− nanoclusters facilitated by highly oxidizing and reducing co-reactant radicals. Chem Sci. 2014;5(10):3814–22. https://doi.org/10.1039/C4SC01086H.

    Article  CAS  Google Scholar 

  95. Hesari M, Ding Z, Workentin MS. Electrogenerated chemiluminescence of monodisperse Au144(SC2H4Ph)60 clusters. Organometallics. 2014;33(18):4888–92. https://doi.org/10.1021/om500112j.

    Article  CAS  Google Scholar 

  96. Wang Q, Shuhuai L, Li J. A molecularly imprinted sensor with enzymatic enhancement of electrochemiluminescence of quantum dots for ultratrace clopyralid determination. Anal Bioanal Chem. 2018;410:5165–72. https://doi.org/10.1007/s00216-0181170-z.

    Article  CAS  PubMed  Google Scholar 

  97. Tong P, Meng Y, Liang J, Li J. Molecularly imprinted electrochemical luminescence sensor based on core-shell magnetic particles with ZIF-8 imprinted material. Sens Actuators B Chem. 2021;330:129405. https://doi.org/10.1016/j.snb.2020.129405.

    Article  CAS  Google Scholar 

  98. Li S, Li J, Ma X, Pang C, Yin G, Luo J. Molecularly imprinted electrochemiluminescence switch sensor with a dual recognition effect for determination of ultra-trace level of cobalt (II). Biosens Bioelectron. 2019;139:111321. https://doi.org/10.1016/j.bios.2019.111321.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

We appreciate the kind support from the National Natural Science Foundation of China (No. 21874126 and 21804127), China Scholarship Council (No. 2017GXZ021380), the Ministry of Science and Technology of the People’s Republic of China (No. 2016YFA0201300), CAS-VPST Silk Road Science Fund 2021 (GJHZ202125), and Department of Science and Technology of Jilin Province (20200703024ZP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guobao Xu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection celebrating ABCs 20th Anniversary.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdussalam, A., Xu, G. Recent advances in electrochemiluminescence luminophores. Anal Bioanal Chem 414, 131–146 (2022). https://doi.org/10.1007/s00216-021-03329-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03329-0

Keywords

Navigation