Skip to main content
Log in

Colorimetric determination of Hg(II) based on a visually detectable signal amplification induced by a Cu@Au-Hg trimetallic amalgam with peroxidase-like activity

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on a method for highly sensitive and selective colorimetric determination of Hg(II) via a signal amplification strategy. Cu@Au nanoparticles (NPs) are found to exhibit intrinsic peroxidase-like activity and can catalyze the oxidation of 3,3′,5,5′-tetramethylbenzidine by H2O2. This is accompanied by a solution color change from colorless to green (with an absorption peak at 655 nm). The catalytic capability of the Cu@Au NPs (pale green) is strongly enhanced by a Cu@Au-Hg trimetallic amalgam (bluish), and this effect can be applied directly to the determination of Hg(II). The limit of detection as observed with the unaided eye is 10 nM, which is at least one order of magnitude lower than that of the known AuNP-based colorimetric assay. Due to excellent specificity of the amalgamation process, the assay is highly selective for Hg(II) and is not interfered by other metal ions in up to 0.5 μM concentrations. This assay was successfully applied to the determination of Hg(II) in tap water. In view of these advantages, we expect this colorimetric method to become an attractive tool for the quantitation of Hg(II) in biological, environmental, and food samples.

Cu@Au nanoparticles (NPs) exhibit intrinsic peroxidase-like activity and can catalyze the oxidation of tetramethylbenzidine (TMB) by H2O2. This is accompanied by a color change of the solution from colorless to green.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Choi Y, Park Y, Kang T, Lee LP (2009) Selective and sensitive detection of metal ions by plasmonic resonance energy transfer-based nanospectroscopy. Nat Nanotechnol 4:742–746

    Article  CAS  Google Scholar 

  2. Cho ES, Kim J, Tejerina B, Hermans TM, Jiang H, Nakanishi H, Yu M, Patashinski AZ, Glotzer SC, Stellacci F (2012) Ultrasensitive detection of toxic cations through changes in the tunnelling current across films of striped nanoparticles. Nat Mater 11:978–985

    Article  CAS  Google Scholar 

  3. Clarkson TW (2002) The three modern faces of mercury. Environ Health Perspect 110:11–23

    Article  CAS  Google Scholar 

  4. Onyido I, Norris AR, Buncel E (2004) Biomolecule-mercury interactions: modalities of DNA base-mercury binding mechanisms. remediation strategies. Chem Rev 104:5911–5929

    Article  CAS  Google Scholar 

  5. Nolan EM, Lippard SJ (2008) Tools and tactics for the optical detection of mercuric ion. Chem Rev 108:3443–3480

    Article  CAS  Google Scholar 

  6. Legrand M, Sousa Passos CJ, Mergler D, Chan HM (2005) Biomonitoring of mercury exposure with single human hair strand. Environ Sci Technol 39:4594–4598

    Article  CAS  Google Scholar 

  7. Harnly M, Seidel S, Rojas P, Fornes R, Flessel P, Smith D, Kreutzer R, Goldman L (1997) Biological monitoring for mercury within a community with soil and fish contamination. Environ Health Perspect 105:424–429

    Article  CAS  Google Scholar 

  8. Hightower JM, Moore D (2003) Mercury levels in high-end consumers of fish. Environ Health Perspect 111:604–608

    Article  CAS  Google Scholar 

  9. Rodrigues JL, Torres DP, Souza VCD, Batista BL, de Souza SS, Curtius AJ, Barbosa F (2009) Determination of total and inorganic mercury in whole blood by cold vapor inductively coupled plasma mass spectrometry (CV ICP-MS) with alkaline sample preparation. J Anal At Spectrom 24:1414–1420

    Article  CAS  Google Scholar 

  10. Senapati T, Senapati D, Singh AK, Fan Z, Kanchanapally R, Ray RC (2011) Highly selective SERS probe for Hg(II) detection using tryptophan-protected popcorn shaped gold nanoparticles. Chem Commun 47:10326–10328

    Article  CAS  Google Scholar 

  11. Ding XF, Kong LT, Wang J, Fang F, Li DD, Liu JH (2013) Highly sensitive SERS detection of Hg2+ ions in aqueous media using gold nanoparticles/graphene heterojunctions. ACS Appl Mater Interfaces 5:7072–7078

    Article  CAS  Google Scholar 

  12. McDowell MA, Dillon CF, Osterloh J, Bolger PM, Pellizzari E, Fernando R, de Oca RM, Schober SE, Sinks T, Jones RL (2004) Hair mercury levels in U.S. children and women of childbearing age: reference range data from NHANES 1999–2000. Environ Health Perspect 112:1165–1171

    Article  CAS  Google Scholar 

  13. Chansuvarn W, Imyim A (2012) Visual and colorimetric detection of mercury (II) ion using gold nanoparticles stabilized with a dithia-diaza ligand. Microchim Acta 176:57–64

    Article  CAS  Google Scholar 

  14. Liang GX, Wang L, Zhang H, Han Z, Wu XY (2012) A colorimetric probe for the rapid and selective determination of mercury(II) based on the disassembly of gold nanorods. Microchim Acta 179:345–350

    Article  CAS  Google Scholar 

  15. Chen Z, Zhang C, Tan Y, Zhou TH, Ma H, Wan CQ, Lin YQ, Li K (2015) Chitosan-functionalized gold nanoparticles for colorimetric detection of mercury ions based on chelation-induced aggregation. Microchim Acta 182:611–616

    Article  CAS  Google Scholar 

  16. Wu GW, He SB, Peng HP, Deng HH, Liu AL, Lin XH, Xia XH, Chen W (2014) Citrate-capped platinum nanoparticle as a smart probe for ultrasensitive mercury sensing. Anal Chem 86:10955–10960

    Article  CAS  Google Scholar 

  17. Lu C, Liu XJ, Li YF, Yu F, Tang LH, Hu YJ, Ying YB (2015) Multifunctional Janus hematite-silica nanoparticles: mimicking peroxidase-like activity and sensitive colorimetric detection of glucose. ACS Appl Mater Interfaces 7:15395–15402

    Article  CAS  Google Scholar 

  18. Wu SJ, Wang YQ, Duan N, Ma HL, Wang ZP (2015) Colorimetric aptasensor based on enzyme for the detection of vibrio parahemolyticus. J Agric Food Chem 63:7849–7854

    Article  CAS  Google Scholar 

  19. Wu CT, Fan DQ, Zhou CY, Liu YQ, Wang EK (2016) Colorimetric strategy for highly sensitive and selective simultaneous detection of histidine and cysteine based on G-Quadruplex-Cu(II) metalloenzyme. Anal Chem 88:2899–2903

    Article  CAS  Google Scholar 

  20. Ju Y, Kim J (2015) Dendrimer-encapsulated Pt nanoparticles with peroxidase-mimetic activity as biocatalytic labels for sensitive colorimetric analyses. Chem Commun 51:13752–13755

    Article  CAS  Google Scholar 

  21. Hamid M, Khalil-ur-Rehman (2009) Potential applications of peroxidases. Food Chem 115:1177–1186

    Article  CAS  Google Scholar 

  22. Song YJ, Qu KG, Zhao C, Ren JS, Qu XG (2010) Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection. Adv Mater 22:2206–2210

    Article  CAS  Google Scholar 

  23. Chen ZB, Tan LL, Wang SX, Zhang YM, Li YH (2016) Sensitive colorimetric detection of K(I) using catalytically active gold nanoparticles triggered signal amplification. Biosens Bioelectron 79:749–757

    Article  CAS  Google Scholar 

  24. Jv Y, Li BX, Cao R (2010) Positively-charged gold nanoparticles as peroxidiase mimic and their application in hydrogen peroxide and glucose detection. Chem Commun 46:8017–8019

    Article  Google Scholar 

  25. Ding C, Yan Y, Xiang D, Zhang C, Xian Y (2016) Magnetic Fe3S4 nanoparticles with peroxidase-like activity, and their use in a photometric enzymatic glucose assay. Microchim Acta 183:625–631

    Article  CAS  Google Scholar 

  26. Xiang Z, Wang Y, Ju P, Zhang D (2016) Optical determination of hydrogen peroxide by exploiting the peroxidase-like activity of AgVO3 nanobelts. Microchim Acta 183:457–463

    Article  CAS  Google Scholar 

  27. Cunderlová V, Hlavácek A, Hornáková V, Peterek M, Nemecek D, Hampl A, Eyer L, Skládal P (2016) Catalytic nanocrystalline coordination polymers as an efficient peroxidase mimic for labeling and optical immunoassays. Microchim Acta 183:651–658

    Article  Google Scholar 

  28. Wang N, Sun J, Chen L, Fan H, Ai S (2015) A Cu2(OH)3Cl-CeO2 nanocomposite with peroxidase-like activity, and its application to the determination of hydrogen peroxide, glucose and cholesterol. Microchim Acta 182:1733–1738

    Article  CAS  Google Scholar 

  29. Zhang Y, Lu F, Yan Z, Wu D, Ma H, Du B, Wei Q (2015) Electrochemiluminescence immunosensing strategy based on the use of Au@Ag nanorods as a peroxidase mimic and NH4CoPO4 as a supercapacitive supporter: application to the determination of carcinoembryonic antigen. Microchim Acta 182:1421–1429

    Article  CAS  Google Scholar 

  30. Liang G, Liu X (2015) G-quadruplex based impedimetric 2-hydroxyfluorene biosensor using hemin as a peroxidase enzyme mimic. Microchim Acta 182:2233–2240

    Article  CAS  Google Scholar 

  31. Andre R, Natalio F, Humanes M, Leppin J, Heinze K, Wever R, Schroder HC, Muller WEG, Tremel W (2011) V2O5 nanowires with an intrinsic peroxidase-like activity. Adv Funct Mater 21:501–509

    Article  CAS  Google Scholar 

  32. Tseng CW, Chang HY, Chang JY, Huang CC (2012) Detection of mercury ions based on mercury-induced switching of enzyme-like activity of platinum/gold nanoparticles. Nanoscale 4:6823–6830

    Article  CAS  Google Scholar 

  33. Chen W, Chen J, Liu AL, Wang LM, Li GW, Lin XH (2011) Peroxidase-like activity of cupric oxide nanoparticle. ChemCatChem 3:1151–1154

    Article  CAS  Google Scholar 

  34. Hong L, Liu AL, Li GW, Chen W, Lin XH (2013) Chemiluminescent cholesterol sensor based on peroxidase-like activity of cupric oxide nanoparticles. Biosens Bioelectron 43:1–5

    Article  CAS  Google Scholar 

  35. Mu JS, Wang Y, Zhao M, Zhang L (2012) Intrinsic peroxidase-like activity and catalase-like activity of Co3O4 nanoparticles. Chem Commun 48:2540–2542

    Article  CAS  Google Scholar 

  36. Na ZL, Deng HH, Lin FL, Xu XW, Weng SH, Liu AL, Lin XH, Xia XH, Chen W (2014) In situ growth of porous platinum nanoparticles on graphene oxide for colorimetric detection of cancer cells. Anal Chem 86:2711–2718

    Article  Google Scholar 

  37. He SB, Deng HH, Liu AL, Li GW, Lin XH, Chen W, Xia XH (2014) Synthesis and peroxidase-like activity of salt-resistant platinum nanoparticles by using bovine serum albumin as the scaffold. ChemCatChem 6:1543–1548

    Article  CAS  Google Scholar 

  38. Shi WB, Wang QL, Long YJ, Cheng ZL, Chen SH, Zheng HZ, Huang YM (2011) Carbon nanodots as peroxidase mimetics and their applications to glucose detection. Chem Commun 47:6695–6697

    Article  CAS  Google Scholar 

  39. Grabar KC, Freeman RG, Hommer MB, Natan MJ (1995) Preparation and characterization of Au colloid monolayers. Anal Chem 67:735–743

    Article  CAS  Google Scholar 

  40. Zhang J, Xu X, Yang C, Yang F, Yang X (2011) Colorimetric iodide recognition and sensing by citrate-stabilized core/shell Cu@Au nanoparticles. Anal Chem 83:3911–3917

    Article  CAS  Google Scholar 

  41. Zhang YF, Yuan Q, Chen T, Zhang XB, Chen Y, Tan WH (2012) DNA-capped mesoporous silica nanoparticles as an ion-responsive release system to determine the presence of mercury in aqueous solutions. Anal Chem 84:1956–1962

    Article  CAS  Google Scholar 

  42. Du JJ, Yin SY, Jiang L, Ma B, Chen XD (2013) A colorimetric logic gate based on free gold nanoparticles and the coordination strategy between melamine and mercury ions. Chem Commun 49:4196–4198

    Article  CAS  Google Scholar 

  43. Chen GH, Chen WY, Yen YC, Wang CW, Chang HT, Chen CF (2014) Detection of mercury (II) ions using colorimetric gold nanoparticles on paper-based analytical devices. Anal Chem 86:6843–6849

    Article  CAS  Google Scholar 

  44. Rameshkumar P, Manivannan S, Ramaraj R (2013) Silver nanoparticles deposited on amine-functionalized silica spheres and their amalgamation-based spectral and colorimetric detection of Hg(II) ions. J Nanopart Res 15:1639–1647

    Article  Google Scholar 

  45. Lu Y, Yu J, Ye WC, Yao X, Zhou PP, Zhang HX, Zhao SQ, Jia LP (2016) Spectrophotometric determination of mercury(II) ions based on their stimulation effect on the peroxidase-like activity of molybdenum disulfide nanosheets. Microchim Acta 183:2481–2489

    Article  CAS  Google Scholar 

Download references

Acknowledgments

All authors gratefully acknowledge the financial support of Beijing Natural Science Foundation (Grant No. 2162010), and Scientific Research Project of Beijing Educational Committee (Grant No. KM201610028008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengbo Chen.

Ethics declarations

The author(s) declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Qiang, H. & Chen, Z. Colorimetric determination of Hg(II) based on a visually detectable signal amplification induced by a Cu@Au-Hg trimetallic amalgam with peroxidase-like activity. Microchim Acta 184, 107–115 (2017). https://doi.org/10.1007/s00604-016-2002-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-2002-5

Keywords

Navigation