Skip to main content
Log in

Electrochemiluminescence immunosensing strategy based on the use of Au@Ag nanorods as a peroxidase mimic and NH4CoPO4 as a supercapacitive supporter: Application to the determination of carcinoembryonic antigen

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The luminol-H2O2 system is widely applied in electrochemiluminescence (ECL) assays but has limited stability. We are presenting an alternative immunosensing strategy by making use of Au@Ag nanorods that mimic the enzyme peroxidase. It also makes use of the supercapacitive supporter NH4CoPO4 as a supporter substrate that facilitates ion movement due to its many nanogaps between the assembled nanoplates. It also plays a vital role for stabilizing the ECL signal of luminol. The immunosensor was constructed by first placing a chitosan film containing NH4CoPO4, Au@Ag and luminol on a glassy carbon electrode (GCE), and the immobilizing anti-CEA on its surface. ECL is generated via electrochemical reaction of luminol on the surface of the Au@Ag-luminol film in the presence of H2O2. The assay was evaluated with respect to effects of pH value, time and temperature of incubation, specificity, reproducibility, and stability in a lab setting. A linear relationship between ECL intensity and CEA concentration is found for the 0.1 pg · mL−1 to 380 ng · mL−1 range, and the lower detection limit is as low as 30 fg · mL−1. In our perception, this immunoassay has a large scope in that numerous other immunoassays will become feasible by using other antibodies and, possibly, aptamers.

We describe an electro-chemiluminescence based   immunosensing strategy for CEA based on the use of Au@Ag nanorods as a peroxidase mimic and NH4CoPO4 as a supercapacitive supporter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cao W, Ferrance JP, Demas J, Landers JP (2006) Quenching of the electrochemiluminescence of tris (2, 2′-bipyridine) ruthenium (II) by ferrocene and its potential application to quantitative DNA detection. J Am Chem Soc 128:7572–7578

    Article  CAS  Google Scholar 

  2. Hu L, Xu G (2010) Applications and trends in electrochemiluminescence. Chem Soc Rev 39:3275–3304

    Article  CAS  Google Scholar 

  3. Miao W (2008) Electrogenerated chemiluminescence and its biorelated applications. Chem Rev 108:2506–2553

    Article  CAS  Google Scholar 

  4. Jie G, Liu P, Wang L, Zhang S (2010) Electrochemiluminescence immunosensor based on nanocomposite film of CdS quantum dots-carbon nanotubes combined with gold nanoparticles-chitosan. Electrochem Commun 12:22–26

    Article  CAS  Google Scholar 

  5. Taleat Z, Khoshroo A, Mazloum-Ardakani M (2014) Screen-printed electrodes for biosensing: a review (2008–2013). Microchim Acta 181:865–891

    Article  CAS  Google Scholar 

  6. Wu M, Yuan D, Xu J, Chen H (2013) Sensitive electrochemiluminescence biosensor based on Au-ITO hybrid bipolar electrode amplification system for cell surface protein detection. Anal Chem 85:11960–11965

    Article  CAS  Google Scholar 

  7. Nan Chen G, Zhang L, Er Lin R, Cong Yang Z, Ping Duan J, Qing Chen H, Brynn Hibbert D (2000) The electrogenerated chemiluminescent behavior of hemin and its catalytic activity for the electrogenerated chemiluminescence of lucigenin. Talanta 50:1275–1281

    Article  Google Scholar 

  8. Jiang X, Chai Y, Wang H, Yuan R (2014) Electrochemiluminescence of luminol enhanced by the synergetic catalysis of hemin and silver nanoparticles for sensitive protein detection. Biosens Bioelectron 54:20–26

    Article  CAS  Google Scholar 

  9. Joung H, Oh YK, Kim M (2014) An automatic enzyme immunoassay based on a chemiluminescent lateral flow immunosensor. Biosens Bioelectron 53:330–335

    Article  CAS  Google Scholar 

  10. Ge L, Wang P, Ge S, Li N, Yu J, Yan M, Huang J (2013) Photoelectrochemical lab-on-paper device based on an integrated paper supercapacitor and internal light source. Anal Chem 85:3961–3970

    Article  CAS  Google Scholar 

  11. Xiong B, Xu R, Zhou R, He Y, Yeung ES (2014) Preventing UV induced cell damage by scavenging reactive oxygen species with enzyme-mimic Au–Pt nanocomposites. Talanta 120:262–267

    Article  CAS  Google Scholar 

  12. Asati A, Santra S, Kaittanis C, Nath S, Perez JM (2009) Oxidase-like activity of polymer-coated cerium oxide nanoparticles. Angew Chem Int Ed 48:2308–2312

    Article  CAS  Google Scholar 

  13. Shi W, Zhang X, He S, Huang Y (2011) CoFe2O4 magnetic nanoparticles as a peroxidase mimic mediated chemiluminescence for hydrogen peroxide and glucose. Chem Commun 47:10785–10787

    Article  CAS  Google Scholar 

  14. Tang Z, Wu H, Zhang Y, Li Z, Lin Y (2011) Enzyme-mimic activity of ferric nano-core residing in ferritin and its biosensing applications. Anal Chem 83:8611–8616

    Article  CAS  Google Scholar 

  15. Gui R, Wang Y, Sun J (2014) Protein-stabilized fluorescent nanocrystals consisting of a gold core and a silver shell for detecting the total amount of cysteine and homocysteine. Microchim Acta 181:1231–1238

    Article  CAS  Google Scholar 

  16. Cheng Y, Lei J, Chen Y, Ju H (2014) Highly selective detection of microRNA based on distance-dependent electrochemiluminescence resonance energy transfer between CdTe nanocrystals and Au nanoclusters. Biosens Bioelectron 51:431–436

    Article  CAS  Google Scholar 

  17. Hou S, Hu X, Wen T, Liu W, Wu X (2013) Core–shell noble metal nanostructures templated by gold nanorods. Adv Mater 25:3857–3862

    Article  CAS  Google Scholar 

  18. Won Y, Huh K, Stanciu LA (2011) Au nanospheres and nanorods for enzyme-free electrochemical biosensor applications. Biosens Bioelectron 26:4514–4519

    Article  CAS  Google Scholar 

  19. Breedon M, Miura N (2013) Augmenting H2 sensing performance of YSZ-based electrochemical gas sensors via the application of Au mesh and YSZ coating. Sensors Actuators B 182:40–44

    Article  CAS  Google Scholar 

  20. Chen X, Wu G, Cai Z, Oyama M, Chen X (2014) Advances in enzyme-free electrochemical sensors for hydrogen peroxide, glucose, and uric acid. Microchim Acta 181:689–705

    Article  CAS  Google Scholar 

  21. Jayabal S, Ramaraj R (2013) Synthesis of core/shell Au/Ag nanorods embedded in functionalized silicate sol–gel matrix and their applications in electrochemical sensors. Electrochim Acta 88:51–58

    Article  CAS  Google Scholar 

  22. Li D, Li J, Jia X, Xia Y, Zhang X, Wang E (2013) A novel Au–Ag–Pt three-electrode microchip sensing platform for chromium (VI) determination. Anal Chim Acta 804:98–103

    Article  CAS  Google Scholar 

  23. Wang L, Wang F, Shang L, Zhu C, Ren W, Dong S (2010) AuAg bimetallic nanoparticles film fabricated based on H2O2-mediated silver reduction and its application. Talanta 82:113–117

    Article  CAS  Google Scholar 

  24. Wang C, Chen W, Chang H (2012) Enzyme mimics of Au/Ag nanoparticles for fluorescent detection of acetylcholine. Anal Chem 84:9706–9712

    Article  CAS  Google Scholar 

  25. Chen L, Zhang Z, Zhang P, Zhang X, Fu A (2011) An ultra-sensitive chemiluminescence immunosensor of carcinoembryonic antigen using HRP-functionalized mesoporous silica nanoparticles as labels. Sensors Actuators B 155:557–561

    Article  CAS  Google Scholar 

  26. Dai H, Lin Y, Xu G, Gong L, Yang C, Ma X, Chen G (2012) Cathodic electrochemiluminescence of luminol using polyaniline/ordered mesoporous carbon (CMK-3) hybrid modified electrode for signal amplification. Electrochim Acta 78:508–514

    Article  CAS  Google Scholar 

  27. Pang H, Yan Z, Wang W, Chen J, Zhang J, Zheng H (2012) Facile fabrication of NH4CoPO4 center dot H2O nano/microstructures and their primarily application as electrochemical supercapacitor. Nanoscale 4:5946–5953

    Article  CAS  Google Scholar 

  28. Zhou J, Tang J, Chen G, Tang D (2014) Layer-by-layer multienzyme assembly for highly sensitive electrochemical immunoassay based on tyramine signal amplification strategy. Biosens Bioelectron 54:323–328

    Article  CAS  Google Scholar 

  29. Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15:1957–1962

    Article  CAS  Google Scholar 

  30. Sau TK, Murphy CJ (2004) Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir 20:6414–6420

    Article  CAS  Google Scholar 

  31. Liu M, Guyot-Sionnest P (2004) Synthesis and optical characterization of Au/Ag core/shell nanorods. J Phys Chem B 108:5882–5888

    Article  CAS  Google Scholar 

  32. Guo X, Zhang Q, Sun Y, Zhao Q, Yang J (2012) Lateral etching of core–shell Au@ metal nanorods to metal-tipped Au nanorods with improved catalytic activity. ACS Nano 6:1165–1175

    Article  CAS  Google Scholar 

  33. Dai Y, Cai Y, Zhao Y, Wu D, Liu B, Li R, Yang M, Wei Q, Du B, Li H (2011) Sensitive sandwich electrochemical immunosensor for alpha fetoprotein based on prussian blue modified hydroxyapatite. Biosens Bioelectron 28:112–116

    Article  CAS  Google Scholar 

  34. Yu S, Wei Q, Du B, Wu D, Li H, Yan L, Ma H, Zhang Y (2013) Label-free immunosensor for the detection of kanamycin using Ag@Fe3O4 nanoparticles and thionine mixed graphene sheet. Biosens Bioelectron 48:224–229

    Article  CAS  Google Scholar 

  35. Yang X, Wang Y, Liu Y, Jiang X (2013) A sensitive hydrogen peroxide and glucose biosensor based on gold/silver core–shell nanorods. Electrochim Acta 108:39–44

    Article  CAS  Google Scholar 

  36. Ren R, Leng C, Zhang S (2010) Detection of DNA and indirect detection of tumor cells based on circular strand-replacement DNA polymerization on electrode. Chem Commun 46:5758–5760

    Article  CAS  Google Scholar 

  37. Cui H, Xu Y, Zhang Z (2004) Multichannel electrochemiluminescence of luminol in neutral and alkaline aqueous solutions on a gold nanoparticle self-assembled electrode. Anal Chem 76:4002–4010

    Article  CAS  Google Scholar 

  38. Li F, Cui H (2013) A label-free electrochemiluminescence aptasensor for thrombin based on novel assembly strategy of oligonucleotide and luminol functionalized gold nanoparticles. Biosens Bioelectron 39:261–267

    Article  Google Scholar 

  39. Lin Z, Zhang G, Yang W, Qiu B, Chen G (2012) CEA fluorescence biosensor based on the FRET between polymer dots and Au nanoparticles. Chem Commun 48:9918–9920

    Article  CAS  Google Scholar 

  40. Liu N, Feng F, Liu Z, Ma Z (2014) Porous platinum nanoparticles and PdPt nanocages for use in an ultrasensitive immunoelectrode for the simultaneous determination of the tumor markers CEA and AFP. Microchim Acta. doi:10.1007/s00604-014-1435-y

    Google Scholar 

  41. Feng D, Lu X, Dong X, Ling Y, Zhang Y (2013) Label-free electrochemical immunosensor for the carcinoembryonic antigen using a glassy carbon electrode modified with electrodeposited Prussian Blue, a graphene and carbon nanotube assembly and an antibody immobilized on gold nanoparticles. Microchim Acta 180:767–774

    Article  CAS  Google Scholar 

  42. Ge L, Yan J, Song X, Yan M, Ge S, Yu J (2012) Three-dimensional paper-based electrochemiluminescence immunodevice for multiplexed measurement of biomarkers and point-of-care testing. Biomaterials 33:1024–1031

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Natural Science Foundation of China (No.21375047), the Natural Science Foundation of Shandong Province (No.ZR2013BL003) and the Natural Science Foundation of UJN (No. XKY1305). QW thanks the Special Foundation for Taishan Scholar Professorship of Shandong Province and UJN (No. TS20130937). All of the authors express their deep thanks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Wei.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 807 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Lu, F., Yan, Z. et al. Electrochemiluminescence immunosensing strategy based on the use of Au@Ag nanorods as a peroxidase mimic and NH4CoPO4 as a supercapacitive supporter: Application to the determination of carcinoembryonic antigen. Microchim Acta 182, 1421–1429 (2015). https://doi.org/10.1007/s00604-015-1473-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1473-0

Keywords

Navigation