Skip to main content
Log in

To what extent is cross-diffusion controllable in a two-dimensional chemotaxis-(Navier–)Stokes system modeling coral fertilization

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We study the chemotaxis-(Navier–)Stokes system modeling coral fertilization: \(n_t+u\cdot \nabla n=\Delta n-\nabla \cdot (nS(x,n,c)\nabla c)-nm\), \(c_t+u\cdot \nabla c=\Delta c-c+m\), \(m_t+u\cdot \nabla m=\Delta m-nm\), \(u_t+\kappa (u\cdot \nabla )u+\nabla P=\Delta u+(n+m)\nabla \phi \) and \(\nabla \cdot u=0\) in a bounded and smooth domain \(\Omega \subset \mathbb {R}^2\), where \(\kappa \in \mathbb {R}\), \(\phi \in W^{2,\infty }(\Omega )\), and \(S\in C^2({\bar{\Omega }}\times [0,\infty )^2;\mathbb {R}^{2\times 2})\) satisfies \(|S(x,n,c)|\le S_0(c)(1+n)^{-\alpha }\) for all \((x,n,c)\in {\bar{\Omega }}\times [0,\infty )^2\) with \(\alpha \in \mathbb {R}\) and the function \(S_0:[0,\infty )\rightarrow [0,\infty )\) nondecreasing. Under the relatively weak destabilizing action of cross-diffusion for \(\alpha \ge 0\), the global boundedness of classical solutions was obtained in Espejo and Winkler (Nonlinearity 31:1227–1259, 2018) and Li (Differ Equ 267:6290–6315, 2019). In this paper, we show that even if n|S| with \(-\frac{1}{2}<\alpha <0\) bears a superlinear growth of n, the corresponding initial-boundary value problem (with any \(\kappa \in \mathbb {R}\)) still possesses a global classical solution emanating from any suitably smooth initial data. Moreover, when \(\kappa =0\), this solution is globally bounded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Black, T.: Global solvability of chemotaxis-fluid systems with nonlinear diffusion and matrix-valued sensitivities in three dimensions. Nonlinear Anal. 180, 129–153 (2019)

    Article  MathSciNet  Google Scholar 

  2. Cao, X.: Global classical solutions in chemotaxis(-Navier)–Stokes system with rotational flux term. J. Differ. Equ. 261, 6883–6914 (2016)

    Article  MathSciNet  Google Scholar 

  3. Cao, X., Lankeit, J.: Global classical small-data solutions for a 3D chemotaxis Navier–Stokes system involving matrix-valued sensitivities. Calc. Var. Partial Differ. Equ. 55, 55–107 (2016)

    Article  Google Scholar 

  4. Chae, M., Kang, K., Lee, J.: Global existence and temporal decay in Keller–Segel models coupled to fluid equations. Commun. Partial Differ. Equ. 39, 1205–1235 (2014)

    Article  MathSciNet  Google Scholar 

  5. Duan, R., Lorz, A., Markowich, P.A.: Global solutions to the coupled chemotaxis-fluid equations. Commun. Partial Differ. Equ. 35, 1635–1673 (2010)

    Article  MathSciNet  Google Scholar 

  6. Espejo, E.E., Suzuki, T.: Reaction terms avoiding aggregation in slow fluids. Nonlinear Anal. Real World Appl. 21, 110–126 (2015)

    Article  MathSciNet  Google Scholar 

  7. Espejo, E.E., Winkler, M.: Global classical solvability and stabilization in a two-dimensional chemotaxis-Navier–Stokes system modeling coral fertilization. Nonlinearity 31, 1227–1259 (2018)

    Article  MathSciNet  Google Scholar 

  8. Evans, L.C.: Partial Differential Equations, 2nd edn. Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI (2010)

  9. Friedman, A.: Partial Differential Equations. Holt, Rinehard and Winston, New York (1969)

    MATH  Google Scholar 

  10. Fujie, K., Ito, A., Winkler, M., Yokota, T.: Stabilization in a chemotaxis model for tumor invasion. Discrete Contin. Dyn. Syst. 36, 151–169 (2016)

    MathSciNet  MATH  Google Scholar 

  11. Giga, Y.: Solutions for semilinear parabolic equations in \(L_p\) and regularity of weak solutions of the Navier–Stokes system. J. Differ. Equ. 61, 186–212 (1986)

    Article  Google Scholar 

  12. Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics, vol. 840. Springer, Berlin (1981)

    Book  Google Scholar 

  13. Herrero, M.A., Velázquez, J.J.L.: A blow-up mechanism for a chemotaxis model. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 24, 633–683 (1997)

  14. Horstmann, D., Winkler, M.: Boundedness vs. blow-up in a chemotaxis system. J. Differ. Equ. 215, 52–107 (2005)

    Article  MathSciNet  Google Scholar 

  15. Kiselev, A., Ryzhik, L.: Biomixing by chemotaxis and enhancement of biological reactions. Commun. Partial Differ. Equ. 37, 298–318 (2012)

    Article  MathSciNet  Google Scholar 

  16. Kiselev, A., Ryzhik, L.: Biomixing by chemotaxis and efficiency of biological reactions: the critical reaction case. J. Math. Phys. 53(11), 115609 (2012)

    Article  MathSciNet  Google Scholar 

  17. Lankeit, J.: Long-term behaviour in a chemotaxis-fluid system with logistic source. Math. Models Methods Appl. Sci. 26, 2071–2109 (2016)

    Article  MathSciNet  Google Scholar 

  18. Li, J., Pang, P.Y.H., Wang, Y.: Global boundedness and decay property of a three-dimensional Keller–Segel–Stokes system modeling coral fertilization. Nonlinearity 32, 2815–2847 (2019)

    Article  MathSciNet  Google Scholar 

  19. Li, T., Suen, A., Winkler, M., Xue, C.: Global small-data solutions of a two-dimensional chemotaxis system with rotational flux terms. Math. Models Methods Appl. Sci. 25, 721–746 (2015)

    Article  MathSciNet  Google Scholar 

  20. Li, X.: Global classical solutions in a Keller–Segel(–Navier)–Stokes system modeling coral fertilization. J. Differ. Equ. 267, 6290–6315 (2019)

    Article  MathSciNet  Google Scholar 

  21. Liu, L., Zheng, J., Bao, G.: Global weak solutions in a three-dimensional Keller–Segel–Navier–Stokes system modeling coral fertilization. Discrete Contin. Dyn. Syst. Ser. B 25, 3437–3460 (2020)

    MathSciNet  MATH  Google Scholar 

  22. Mizoguchi, N., Souplet, P.: Nondegeneracy of blow-up points for the parabolic Keller-Segel system. Ann. Inst. H. Poincaré Anal. Non Linéaire 31, 851–875 (2014)

  23. Nagai, T., Senba, T., Yoshida, K.: Application of the Trudinger–Moser inequality to a parabolic system of chemotaxis. Funkcial. Ekvac. 40, 411–433 (1997)

    MathSciNet  MATH  Google Scholar 

  24. Osaki, K., Tsujikawa, T., Yagi, A., Mimura, M.: Exponential attractor for a chemotaxis-growth system of equations. Nonlinear Anal. 51, 119–144 (2002)

    Article  MathSciNet  Google Scholar 

  25. Sohr, H.: The Navier–Stokes Equations. An Elementary Functional Analytic Approach. Birkhäuser, Basel (2001)

    MATH  Google Scholar 

  26. Tao, Y., Winkler, M.: Boundedness and decay enforced by quadratic degradation in a three-dimensional chemotaxis-fluid system. Z. Angew. Math. Phys. 66, 2555–2573 (2015)

    Article  MathSciNet  Google Scholar 

  27. Tao, Y., Winkler, M.: Blow-up prevention by quadratic degradation in a two-dimensional Keller–Segel–Navier–Stokes system. Z. Angew. Math. Phys. 67(6), 23 (2016)

    Article  MathSciNet  Google Scholar 

  28. Wang, W.: Global boundedness of weak solutions for a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and rotation. J. Differ. Equ. 268, 7047–7091 (2020)

    Article  MathSciNet  Google Scholar 

  29. Wang, Y.: Global weak solutions in a three-dimensional Keller–Segel–Navier–Stokes system with subcritical sensitivity. Math. Models Methods Appl. Sci. 27, 2745–2780 (2017)

    Article  MathSciNet  Google Scholar 

  30. Wang, Y., Winkler, M., Xiang, Z.: Global classical solutions in a two-dimensional chemotaxis-Navier–Stokes system with subcritical sensitivity. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 18, 421–466 (2018)

  31. Wang, Y., Xiang, Z.: Global existence and boundedness in a Keller–Segel–Stokes system involving a tensor-valued sensitivity with saturation. J. Differ. Equ. 259, 7578–7609 (2015)

    Article  MathSciNet  Google Scholar 

  32. Wang, Y., Xiang, Z.: Global existence and boundedness in a Keller–Segel–Stokes system involving a tensor-valued sensitivity with saturation: the 3D case. J. Differ. Equ. 261, 4944–4973 (2016)

    Article  MathSciNet  Google Scholar 

  33. Winkler, M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model. J. Differ. Equ. 248, 2889–2905 (2010)

    Article  MathSciNet  Google Scholar 

  34. Winkler, M.: Boundedness in the higher-dimensional parabolic–parabolic chemotaxis system with logistic source. Commun. Partial Differ. Equ. 35, 1516–1537 (2010)

    Article  MathSciNet  Google Scholar 

  35. Winkler, M.: Global large-data solutions in a chemotaxis-(Navier–)Stokes system modeling cellular swimming in fluid drops. Commun. Partial Differ. Equ. 37, 319–351 (2012)

    Article  MathSciNet  Google Scholar 

  36. Winkler, M.: Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller–Segel system. J. Math. Pures Appl. 100, 748–767 (2013)

    Article  MathSciNet  Google Scholar 

  37. Winkler, M.: Stabilization in a two-dimensional chemotaxis-Navier–Stokes system. Arch. Ration. Mech. Anal. 211, 455–487 (2014)

    Article  MathSciNet  Google Scholar 

  38. Winkler, M.: Global weak solutions in a three-dimensional chemotaxis-Navier–Stokes system. Ann. Inst. H. Poincaré Anal. Non Linéaire 33, 1329–1352 (2016)

  39. Winkler, M.: How far do chemotaxis-driven forces influence regularity in the Navier–Stokes system? Trans. Am. Math. Soc. 369, 3067–3125 (2017)

    Article  MathSciNet  Google Scholar 

  40. Winkler, M.: Does fluid interaction affect regularity in the three-dimensional Keller–Segel system with saturated sensitivity? J. Math. Fluid Mech. 20, 1889–1909 (2018)

    Article  MathSciNet  Google Scholar 

  41. Winkler, M.: Does repulsion-type directional preference in chemotactic migration continue to regularize Keller–Segel systems when coupled to the Navier–Stokes equations? NoDEA Nonlinear Differ. Equ. Appl. 26, 22 (2019)

    Article  MathSciNet  Google Scholar 

  42. Winkler, M.: Small-mass solutions in the two-dimensional Keller–Segel system coupled to the Navier–Stokes equations. SIAM J. Math. Anal. 52, 2041–2080 (2020)

    Article  MathSciNet  Google Scholar 

  43. Xue, C.: Macroscopic equations for bacterial chemotaxis: integration of detailed biochemistry of cell signaling. J. Math. Biol. 70, 1–44 (2015)

    Article  MathSciNet  Google Scholar 

  44. Xue, C., Othmer, H.G.: Multiscale models of taxis-driven patterning in bacterial populations. SIAM J. Appl. Math. 70, 133–167 (2009)

    Article  MathSciNet  Google Scholar 

  45. Zheng, J.: A new result for the global existence (and boundedness) and regularity of a three-dimensional Keller–Segel–Navier–Stokes system modeling coral fertilization. J. Differ. Equ. 272, 164–202 (2021)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wang.

Additional information

Communicated by Y. Giga.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Zhang, M. & Zheng, S. To what extent is cross-diffusion controllable in a two-dimensional chemotaxis-(Navier–)Stokes system modeling coral fertilization. Calc. Var. 60, 143 (2021). https://doi.org/10.1007/s00526-021-02039-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-021-02039-w

Mathematics Subject Classification

Navigation