Skip to main content
Log in

Boundedness in a Chemotaxis-(Navier–)Stokes System Modeling Coral Fertilization with Slow p-Laplacian Diffusion

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

In this paper, we investigate the effects exerted by the interplay among p-Laplacian diffusion, chemotaxis cross diffusion and the fluid dynamic mechanism on global boundedness of the solutions. The mathematical model considered herein appears as

$$\begin{aligned} \left\{ \begin{array}{llllll} \rho _t+u\cdot \nabla \rho =\nabla \cdot (|\nabla \rho |^{p-2}\nabla \rho )-\nabla \cdot (\rho \nabla c)-\rho m,&{}\quad x\in \Omega ,\quad ~t>0,\\ c_t+u\cdot \nabla c=\Delta c-c+m,&{}\quad x\in \Omega ,\quad ~t>0,\\ m_t+u\cdot \nabla m=\Delta m-\rho m,&{}\quad x\in \Omega ,\quad ~t>0,\\ u_t+(u\cdot \nabla )u=\Delta u-\nabla P+(\rho +m)\nabla \phi ,&{}\quad x\in \Omega ,\quad ~t>0,\\ \nabla \cdot u=0,&{}\quad x\in \Omega ,\quad ~t>0, \end{array}\right. \end{aligned}$$

where \(\Omega \subset {\mathbb {R}}^N~(N=2,3)\) is a general bounded domain with smooth boundary. It is proved that if either

$$\begin{aligned} p>2 \end{aligned}$$

for \(\kappa \in {\mathbb {R}},N=2\) or

$$\begin{aligned} p>\frac{94}{45} \end{aligned}$$

for \(\kappa =0,N=3\) is satisfied, then for each properly chosen initial data an associated initial-boundary problem admits a global weak solution which is bounded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alikakos, N.D.: \(L^p\)-bounds of solutions of reaction diffusion equations. Commun. Partial Differ. Equ. 4, 827–868 (1979)

    Article  Google Scholar 

  2. Amman, H.: Dynamic theory of quasilinear parabolic systems III. Global existence. Math. Z. 202, 219–250 (1989)

    Article  MathSciNet  Google Scholar 

  3. Coll, J.C., et al.: Chemical aspects of mass spawning in corals. I. Sperm-atractant molecules in the eggs of the scleractinian coral Montipora digitata. Mar. Biol. 118, 177–182 (1994)

    Article  Google Scholar 

  4. Coll, J.C., et al.: Chemical aspects of mass spawning in corals. II. (-)-Epi-thunbergol, the sperm attractant in the eggs of the soft coral Lobophytum crassum (Cnidaria: Octocorallia). Mar. Biol. 123, 137–143 (1995)

    Article  Google Scholar 

  5. Cong, W., Liu, J.-G.: A degenerate p-Laplacian Keller–Segel model. Kinet. Relat. Models 9, 687–714 (2016)

    Article  MathSciNet  Google Scholar 

  6. Dombrowski, C., Cisneros, L., Chatkaew, S., Goldstein, R.E., Kessler, J.O.: Self-concentration and large-scale coherence in bacterial dynamics. Phys. Rev. Lett. 93, 098103-1–4 (2004)

    Article  ADS  Google Scholar 

  7. Giga, Y.: Solutions for semilinear parabolic equations in \(L^p\) and regularity of weak solutions of the Navier–Stokes system. J. Differ. Equ. 61, 186–212 (1986)

    Article  ADS  Google Scholar 

  8. Giga, Y.: The Stokes operator in \(L_{r}\) spaces. Proc. Jpn. Acad. Ser. 2, 85–89 (1981)

    Article  Google Scholar 

  9. Giga, Y., Sohr, H.: Abstract \(L^p\) estimates for the Cauchy problem with applications to the Navier–Stokes equations in exterior domains. J. Funct. Anal. 102, 72–94 (1991)

    Article  MathSciNet  Google Scholar 

  10. Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Springer, Berlin (1981)

    Book  Google Scholar 

  11. Horstmann, D., Winkler, M.: Boundedness vs. blow-up in a chemotaxis system. J. Differ. Equ. 215, 52–107 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  12. Huang, H., Liu, J.-G.: Well-posedness for the Keller–Segel equation with fractional Laplacian and the theory of propagation of chaos. Kinet. Relat. Models 9, 715–748 (2016)

    Article  MathSciNet  Google Scholar 

  13. Ke, Y., Zheng, J.: An optimal result for global existence in a three-dimensional Keller–Segel–Navier-Stokes system involving tensor-valued sensitivity with saturation. Calc. Var. Part. Differ. Equ. 58, 109 (2019)

    Article  MathSciNet  Google Scholar 

  14. Kiselev, A., Ryzhik, L.: Biomixing by chemotaxis and enhancement of biological reactions. Commun. Partial Differ. Equ. 37, 298–312 (2012)

    Article  MathSciNet  Google Scholar 

  15. Kiselev, A., Ryzhik, L.: Biomixing by chemotaxis and efficiency of biological reactions: the critical reaction case. J. Math. Phys. 53, 115609 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  16. Lankeit, J.: Long-term behaviour in a chemotaxis-fluid system with logistic source. Math. Mod. Meth. Appl. Sci. 26, 2071–2109 (2016)

    Article  MathSciNet  Google Scholar 

  17. Liu, J., Wang, Y.: Global existence and boundedness in a Keller–Segel–(Navier–)Stokes system with signal-dependent sensitivity. J. Math. Anal. Appl. 447, 499–528 (2017)

    Article  MathSciNet  Google Scholar 

  18. Miller, R.L.: Sperm chemotaxis in hydromedusae. I. Species specifity and sperm behavior. Mar. Biol. 53, 99–114 (1979)

    Article  Google Scholar 

  19. Miller, R.L.: Demonstration of sperm chemotaxis in Echinodermata: Asteroidea, holothuroidea, ophiuroidea. J. Exp. Zool. 234, 383–414 (1985)

    Article  ADS  Google Scholar 

  20. Sohr, H.: The Navier–Stokes Equations. An Elementary Functional Analytic Approach. Birkhäuser Verlag, Basel (2001)

    MATH  Google Scholar 

  21. Stinner, C., Surulescu, C., Winkler, M.: Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion. SIAM J. Math. Anal. 46, 1969–2007 (2014)

    Article  MathSciNet  Google Scholar 

  22. Tao, W., Li, Y.: Global existence and boundedness in a chemotaxis-Stokes system with slow p-Laplacian diffusion. arXiv:1809.03310

  23. Tao, W., Li, Y.: Global weak solutions for the three-dimensional chemotaxis-Navier–Stokes system with slow p-Laplacian diffusion. Nonlin. Anal. Real World Appl. 45, 26–52 (2019)

    Article  MathSciNet  Google Scholar 

  24. Tao, Y., Winkler, M.: Blow-up prevention by quadratic degradation in a two-dimensional Keller–Segel–Navier–Stokes system. Z. Angew. Math. Phys. 67, 138 (2016)

    Article  MathSciNet  Google Scholar 

  25. Tao, Y., Winkler, M.: Boundedness and decay enforced by quadratic degradation in a three-dimensional chemotaxis-fluid system. Z. Angew. Math. Phys. 66, 2555–2573 (2015)

    Article  MathSciNet  Google Scholar 

  26. Tao, Y., Winkler, M.: Boundedness in a quasilinear parabolic-parabolic Keller–Segel system with subcritical sensitivity. J. Differ. Equ. 252, 692–715 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  27. Teman, R.: Navier–Stokes Equations. Theory and Numerical Analysis. Studies in Mathematics and its Applications. Vol. 2, North-Holland, Amsterdam (1977)

  28. Wang, Y., Xiang, Z.: Global existence and boundedness in a Keller–Segel–Stokes system involving a tensor-valued sensitivity with saturation. J. Differ. Equ. 259, 7578–7609 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  29. Wang, Y., Xiang, Z.: Global existence and boundedness in a Keller–Segel–Stokes system involving a tensor-valued sensitivity with saturation: the 3D case. J. Differ. Equ. 261, 4944–4973 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  30. Winkler, M.: A three-dimensional Keller–Segel–Navier–Stokes system with logistic source: global weak solutions and asymptotic stabilization. J. Funct. Anal. 276, 1339–1401 (2019)

    Article  MathSciNet  Google Scholar 

  31. Winkler, M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model. J. Differ. Equ. 248, 2889–2905 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  32. Winkler, M.: Boundedness and large time behavior in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity. Calc. Var. Part. Differ. Equ. 54, 3789–3828 (2015)

    Article  MathSciNet  Google Scholar 

  33. Winkler, M.: Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller–Segel system. J. de Math. Pures et Appl. 100, 748–767 (2013)

    Article  MathSciNet  Google Scholar 

  34. Winkler, M.: Global existence and stabilization in a degenerate chemotaxis-Stokes system with mildly strong diffusion enhancement. J. Differ. Equ. 264, 6109–6151 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  35. Winkler, M.: Global large-data solutions in a chemotaxis-(Navier–)Stokes system modeling cellular swimming in fluid drops. Commun. Partial Differ. Equ. 37, 319–351 (2012)

    Article  MathSciNet  Google Scholar 

  36. Winkler, M.: Global weak solutions in a three-dimensional chemotaxis-Navier–Stokes system. Ann. Inst. Henri. Poincar\(\acute{e}\), Anal. Non Lin\(\acute{e}\)aire 33, 1329–1352 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  37. Winkler, M.: How far do chemo-driven forces influence regularity in the Navier–Stokes system? Trans. Am. Math. Soc. 369, 3067–3125 (2017)

    Article  Google Scholar 

  38. Winkler, M.: Stabilization in a two-dimensional chemotaxis-Navier–Stokes system. Arch. Ration. Mech. Anal. 211, 455–487 (2014)

    Article  MathSciNet  Google Scholar 

  39. Zhang, Q., Li, Y.: Global weak solutions for the three-dimensional chemotaxis-Navier–Stokes system with nonlinear diffusion. J. Differ. Equ. 259, 3730–3754 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  40. Zheng, J.: An optimal result for global existence and boundedness in a three-dimensional Keller–Segel–Stokes system with nonlinear diffusion. J. Differ. Equ. 267, 2385–2415 (2019)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author is grateful for the reviewer’s carefully reading and valuable comments. This work is supported by Jiangsu Provincial Natural Science Foundation of China (Grant No. BK20190504).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Liu.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest.

Additional information

Communicated by G. Seregin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J. Boundedness in a Chemotaxis-(Navier–)Stokes System Modeling Coral Fertilization with Slow p-Laplacian Diffusion. J. Math. Fluid Mech. 22, 10 (2020). https://doi.org/10.1007/s00021-019-0469-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-019-0469-7

Keywords

Mathematics Subject Classification

Navigation