Skip to main content
Log in

Geometrically nonlinear analysis utilizing co-rotational framework for solid element based on modified Hellinger-Reissner principle

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In this paper, a solution framework for solid element based on co-rotational formulation is developed for geometrically nonlinear analysis. A novel eight-node solid element embedded in the framework is developed by means of a modified Hellinger-Reissner variational principle. The stiffness matrix is derived by compatible displacement and the most desirable stress fields, as well as a penalty function. In addition, an accelerated modified Newton method is proposed to improve the efficiency of the solution of nonlinear equations. The key idea of this algorithm is that the convergence rate of modified Newton method is accelerated by Aitken method. Furthermore, the equilibrium path of structures exhibiting instability is computed by a hybrid load-controlled/arc-length algorithm. The stiffness parameter is introduced as the criterion for switching load control to arc-length method. Several numerical examples and an experiment for large displacement analysis are presented to demonstrate the efficiency and accuracy of the proposed framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Abaqus Analysis User’s Guide (2014) Version 6.14. Dassault Systèmes Simulia Corp, United States

  2. Abaqus Theory Guide (2014) Version 6.14. Dassault Systèmes Simulia Corp, United States

  3. Abed-Meraim F, Combescure A (2009) An improved assumed strain solid-shell element formulation with physical stabilization for geometric non-linear applications and elastic-plastic stability analysis. Int J Numer Meth Eng 80(13):1640–1686

    Article  MATH  Google Scholar 

  4. Auricchio F, Balduzzi G, Lovadina C (2015) The dimensional reduction approach for 2D non-prismatic beam modelling: A solution based on Hellinger-Reissner principle. Int J Solids Struct 63:264–276

    Article  Google Scholar 

  5. Bergan PG, Horrigmoe G, Bråkeland B et al (1978) Solution techniques for non-linear finite element problems. Int J Numer Meth Eng 12(11):1677–1696

    Article  MATH  Google Scholar 

  6. Cao C, Qin QH, YU A (2012) A new hybrid finite element approach for three-dimensional elastic problems. Archives of Mechanics 64(3):261–292

    MATH  Google Scholar 

  7. Cao Y, Hu N, Yao Z (2001) Penalty-equilibrating 3d-mixed/hybrid element based on the three-field variational principle. Journal of Tsinghua University (Science and Technology) 41(8):79–82

    Google Scholar 

  8. Cho H, Shin S, Yoh JJ (2017) Geometrically nonlinear quadratic solid/solid-shell element based on consistent corotational approach for structural analysis under prescribed motion. Int J Numer Meth Eng 112(5):434–458

    Article  Google Scholar 

  9. Chou P, Carleone J, Hsu C (1972) Elastic constants of layered media. J Compos Mater 6(1):80–93

    Article  Google Scholar 

  10. Clarke MJ, Hancock GJ (1990) A study of incremental-iterative strategies for non-linear analyses. Int J Numer Meth Eng 29(7):1365–1391

    Article  Google Scholar 

  11. Dutta A, White D (1997) Automated solution procedures for negotiating abrupt non-linearities and branch points. Eng Comput 14:31–56

    Article  MATH  Google Scholar 

  12. Faroughi S, Khodaparast HH, Friswell MI (2015) Non-linear dynamic analysis of tensegrity structures using a co-rotational method. Int J Non-Linear Mech 69:55–65

    Article  Google Scholar 

  13. Fredriksson M, Ottosen NS (2007) Accurate eight-node hexahedral element. Int J Numer Meth Eng 72(6):631–657

    Article  MATH  Google Scholar 

  14. He PQ, Sun Q, Liang K (2019) Generalized modal element method: part I-theory and its application to eight-node asymmetric and symmetric solid elements in linear analysis. Comput Mech 63:755–781

    Article  MATH  Google Scholar 

  15. He PQ, Sun Q, Liang K (2019) Generalized modal element method: part II-application to eight-node asymmetric and symmetric solid-shell elements in linear analysis. Comput Mech 63:783–804

    Article  MATH  Google Scholar 

  16. Hughes TJ, Cohen M, Haroun M (1978) Reduced and selective integration techniques in the finite element analysis of plates. Nuclear Engineering and Design 46(1):203–222. Special Issue Structural Mechanics in Reactor Technology-Smirt-4

  17. Irons BM, Tuck RC (1969) A version of the aitken accelerator for computer iteration. Int J Numer Meth Eng 1(3):275–277

    Article  MATH  Google Scholar 

  18. Kim KD, Liu GZ, Han SC (2005) A resultant 8-node solid-shell element for geometrically nonlinear analysis. Comput Mech 35:315–331

    Article  MATH  Google Scholar 

  19. Kim KD, Han SC, Suthasupradit S (2007) Geometrically non-linear analysis of laminated composite structures using a 4-node co-rotational shell element with enhanced strains. Int J Non-Linear Mech 42(6):864–881

    Article  Google Scholar 

  20. Lee SY, Park DY (2007) Buckling analysis of laminated composite plates containing delaminations using the enhanced assumed strain solid element. Int J Solids Struct 44(24):8006–8027

    Article  MATH  Google Scholar 

  21. Liu N, Plucinsky P, Jeffers A (2017) Combining load-controlled and displacement-controlled algorithms to model thermal-mechanical snap-through instabilities in structures. J Eng Mech 143(04017):051

    Google Scholar 

  22. Liu W, Wu C (1998) A penalty-equilibrating hybrid stress 3d element. Acta Mech Solida Sin 11(1):46–55

    Article  Google Scholar 

  23. Marinkovic D, Rama G, Zehn M (2019) Abaqus implementation of a corotational piezoelectric 3-node shell element with drilling degree of freedom. Facta Universitatis Series Mechanical Engineering 17:269

    Article  Google Scholar 

  24. Moita GF, Crisfield MA (1996) A finite element formulation for 3-D continua using the co-rotational technique. Int J Numer Meth Eng 39(22):3775–3792

    Article  MATH  Google Scholar 

  25. Mostafa M, Sivaselvan M, Felippa C (2013) A solid-shell corotational element based on ANDES, ANS and EAS for geometrically nonlinear structural analysis. Int J Numer Meth Eng 95(2):145–180

    Article  MATH  Google Scholar 

  26. Nastran MSC (2012) Linear static analysis user’s guide. The MacNeal-Schwendler Corporation, Santa Ana

    Google Scholar 

  27. Nguyen CU, Ibrahimbegovic A (2020) Visco-plasticity stress-based solid dynamics formulation and time-stepping algorithms for stiff case. Int J Solids Struct 196–197:154–170

    Article  Google Scholar 

  28. Nour-Omid B, Rankin C (1991) Finite rotation analysis and consistent linearization using projectors. Comput Methods Appl Mech Eng 93(3):353–384

    Article  MATH  Google Scholar 

  29. Pian THH, Wu CC (1988) A rational approach for choosing stress terms for hybrid finite element formulations. Int J Numer Meth Eng 26(10):2331–2343

    Article  MATH  Google Scholar 

  30. Riks E (1972) The Application of Newton’s Method to the Problem of Elastic Stability. J Appl Mech 39(4):1060–1065

    Article  MATH  Google Scholar 

  31. Riks E (1979) An incremental approach to the solution of snapping and buckling problems. Int J Solids Struct 15(7):529–551

    Article  MATH  Google Scholar 

  32. Ritto-Corrêa M, Camotim D (2008) On the arc-length and other quadratic control methods: Established, less known and new implementation procedures. Computers & Structures 86(11):1353–1368

    Article  Google Scholar 

  33. Schwarze M, Reese S (2009) A reduced integration solid-shell finite element based on the EAS and the ANS concept-Geometrically linear problems. Int J Numer Meth Eng 80:1322–1355

    Article  MATH  Google Scholar 

  34. Shi J, Liu Z, Hong J (2018) Multibody dynamic analysis using a rotation-free shell element with corotational frame. Acta Mech Sin 34(04):769–780

    Article  MATH  Google Scholar 

  35. Sze K, Liu X, Lo S (2004) Popular benchmark problems for geometric nonlinear analysis of shells. Finite Elem Anal Des 40(11):1551–1569

    Article  Google Scholar 

  36. Sze KY, Yi S, Tay MH (1997) An explicit hybrid stabilized eighteen-node solid element for thin shell analysis. Int J Numer Meth Eng 40(10):1839–1856

    Article  Google Scholar 

  37. Sze KY, Chan WK, Pian THH (2002) An eight-node hybrid-stress solid-shell element for geometric non-linear analysis of elastic shells. Int J Numer Meth Eng 55(7):853–878

    Article  MATH  Google Scholar 

  38. Tang YQ, Zhou ZH, Chan SL (2017) A simplified co-rotational method for quadrilateral shell elements in geometrically nonlinear analysis. Int J Numer Meth Eng 112(11):1519–1538

    Article  Google Scholar 

  39. Tang YQ, Liu YP, Chan SL et al (2019) An innovative co-rotational pointwise equilibrating polynomial element based on Timoshenko beam theory for second-order analysis. Thin-Walled Structures 141:15–27

    Article  Google Scholar 

  40. Vu-Quoc L, Tan X (2013) Efficient Hybrid-EAS solid element for accurate stress prediction in thick laminated beams, plates, and shells. Comput Methods Appl Mech Eng 253:337–355

    Article  MATH  Google Scholar 

  41. Wang Z, Sun Q (2014) Corotational nonlinear analyses of laminated shell structures using a 4-node quadrilateral flat shell element with drilling stiffness. Acta Mech Sin 03(30):418–429

    Article  MATH  Google Scholar 

  42. Yang J, Xia P (2019) Rotation vector and its complement parameterization for singularity-free corotational shell element formulations. Comput Mech 64:789–805

    Article  MATH  Google Scholar 

  43. Rong Y, Sun Q, Liang K (2022) Modified unified co-rotational framework with beam, shell and brick elements for geometrically nonlinear analysis. Acta Mechanica Sinica 38(4):421136

    Article  Google Scholar 

  44. Yunus SM, Pawlak TP, Cook RD (1991) Solid elements with rotational degrees of freedom: Part 1-hexahedron elements. Int J Numer Meth Eng 31(3):573–592

    Article  MATH  Google Scholar 

  45. Zheng Y, Wang J, Ye H et al (2019) A solid-shell based finite element model for thin-walled soft structures with a growing mass. Int J Solids Struct 163:87–101

    Article  Google Scholar 

  46. Zienkiewicz OC (1974) Constrained variational principles and penalty function methods in finite element analysis. In: Watson GA (ed) Conference on the Numerical Solution of Differential Equations. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 207–214

    Chapter  Google Scholar 

  47. Zienkiewicz OC, Taylor RL, Too JM (1971) Reduced integration technique in general analysis of plates and shells. Int J Numer Meth Eng 3(2):275–290

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Nos. 11972297, 11972300) and the Fundamental Research Funds for the Central Universities of China (Grant No. G2019KY05203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rong, Y., Sun, F., Sun, Q. et al. Geometrically nonlinear analysis utilizing co-rotational framework for solid element based on modified Hellinger-Reissner principle. Comput Mech 71, 127–142 (2023). https://doi.org/10.1007/s00466-022-02229-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-022-02229-z

Keywords

Navigation