Skip to main content
Log in

Rotation vector and its complement parameterization for singularity-free corotational shell element formulations

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Theoretical and computational aspects of rotation vector and its complement parameterization are examined in detail in this paper. The mutual relationships between the variations of rotation vector and its complement and the spin variable are presented. It shows that the switch of rotation parameter between rotation vector and its complement preserves not only the strains but also the angular velocity and acceleration, and the force vectors and tangent matrices of an element. Two singularity-free corotational shell element formulations are presented. The first formulation is a non-consistent one, in which a simple way only using rotation vector is proposed to modify the exact rotation update approach via the Baker–Campbell–Hausdorff formula, while the second formulation is a consistent one. The novelty is that, following the presented method, the existing singular spatial beam and shell element formulations based on rotation vector parameterization could be modified to be the singularity-free ones with only a few changes. Finally, three numerical examples involving large rotations are analyzed to demonstrate the capability of the presented formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Bathe KJ (1996) Finite element procedures, chap 6. Prentice-Hall, Upper Saddle River

    Google Scholar 

  2. Crisfield MA (1997) Non-linear finite element analysis of solids and structures. Advanced topics, chaps 17–18, vol 2. Wiley, Chischester

    Google Scholar 

  3. Stuelpnagel J (1964) On the parametrization of the three-dimensional rotation group. SIAM Rev 6(4):422–430

    Article  MathSciNet  MATH  Google Scholar 

  4. Argyris J (1982) An excursion into large rotations. Comput Methods Appl Mech Eng 32(1–3):85–155

    Article  MathSciNet  MATH  Google Scholar 

  5. Geradin M, Rixen D (1995) Parametrization of finite rotations in computational dynamics: a review. Revue europenne des lments finis 4(5–6):497–553

    Article  MathSciNet  MATH  Google Scholar 

  6. Bauchau OA, Trainelli L (2003) The vectorial parameterization of rotation. Nonlinear Dyn 32(1):71–92

    Article  MathSciNet  MATH  Google Scholar 

  7. Makinen J (2008) Rotation manifold SO(3) and its tangential vectors. Comput Mech 42:907–919

    Article  MathSciNet  MATH  Google Scholar 

  8. Cardona A, Geradin M (1988) A beam finite element non-linear theory with finite rotations. Int J Numer Methods Eng 26(11):2403–2438

    Article  MATH  Google Scholar 

  9. Simo JC, Vu-Quoc L (1988) On the dynamics in space of rods undergoing large motions—a geometrically exact approach. Comput Methods Appl Mech Eng 66(2):125–161

    Article  MathSciNet  MATH  Google Scholar 

  10. Ibrahimbegovic A (1997) On the choice of finite rotation parameters. Comput Methods Appl Mech Eng 149(1–4):49–71

    Article  MathSciNet  MATH  Google Scholar 

  11. Brank B, Ibrahimbegovic A (2001) On the relation between different parametrizations of finite rotations for shells. Eng Comput 18(2):950–973

    Article  MATH  Google Scholar 

  12. Ritto-Correa M, Camotim D (2002) On the differentiation of the Rodrigues formula and its significance for the vector-like parameterization of Reissner–Simo beam theory. Int J Numer Methods Eng 55(9):1005–1032

    Article  MathSciNet  MATH  Google Scholar 

  13. Smolenski WM (1999) Statically and kinematically exact nonlinear theory of rods and its numerical verification. Comput Methods Appl Mech Eng 178(1–2):89–113

    Article  MathSciNet  MATH  Google Scholar 

  14. Battini JM, Pacoste C (2002) Co-rotational beam elements with warping effects in instability problems. Comput Methods Appl Mech Eng 191(17–18):1755–1789

    Article  MATH  Google Scholar 

  15. Ibrahimbegovic A, Frey F, Kozar I (1995) Computational aspects of vector-like parameterization of three-dimensional finite rotations. Int J Numer Methods Eng 38(21):3653–3673

    Article  MATH  Google Scholar 

  16. Makinen J (2007) Total Lagrangian Reissner’s geometrically exact beam element without singularities. Int J Numer Methods Eng 70(9):1009–1048 2007

    Article  MathSciNet  MATH  Google Scholar 

  17. Ghosh S, Roy D (2009) A frame-invariant scheme for the geometrically exact beam using rotation vector parametrization. Comput Mech 44:103–118

    Article  MATH  Google Scholar 

  18. Engø K (2001) On the BCH-formula in so(3). BIT Numer Math 41:629–632

    Article  MathSciNet  MATH  Google Scholar 

  19. Nour-Omid B, Rankin CC (1991) Finite rotation analysis and consistent linearization using projectors. Comput Methods Appl Mech Eng 93(3):353–384

    Article  MATH  Google Scholar 

  20. Hsiao KM, Hung HC (1989) Large-deflection analysis of shell structure by using corotational total lagrangian formulation. Comput Methods Appl Mech Eng 73(2):209–225

    Article  MATH  Google Scholar 

  21. Felippa CA, Haugen B (2004) A unified formulation of small-strain corotational finite elements: I. Theory. Comput Methods Appl Mech Eng 194(21–24):2285–2335

    MATH  Google Scholar 

  22. Pacoste C (1998) Co-rotational flat facet triangular elements for shell instability analysis. Comput Methods Appl Mech Eng 156(1–4):75–110

    Article  MATH  Google Scholar 

  23. Caselli F, Bisegna P (2013) Polar decomposition based corotational framework for triangular shell elements with distributed loads. Int J Numer Methods Eng 95(6):499–528

    Article  MathSciNet  MATH  Google Scholar 

  24. Peng X, Crisfield MA (1992) A consistent co-rotational formulation for shells using the constant stress-constant moment triangle. Int J Numer Methods Eng 35(9):1829–1847

    Article  MATH  Google Scholar 

  25. Li ZX, Vu-Quoc L (2007) An efficient co-rotational formulation for curved triangular shell element. Int J Numer Methods Eng 72(9):1029–1062

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhong HG, Crisfield MA (1998) An energy-conserving co-rotational procedure for the dynamics of shell structures. Eng Comput 15(5):552–576

    Article  MATH  Google Scholar 

  27. Yang JS, Xia PQ (2015) Corotational nonlinear dynamic analysis of thin-shell structures with finite rotations. AIAA J 53(3):663–677

    Article  Google Scholar 

  28. Espath LFR, Braun AL, Awruch AM, Dalcin LD (2015) A NURBS based finite element model applied to geometrically nonlinear elastodynamics using a corotational approach. Int J Numer Methods Eng 102(13):1839–1868

    Article  MathSciNet  MATH  Google Scholar 

  29. Chimakurthi SK, Cesnik SKC, Stanford BK (2011) Flapping-wing structural dynamics formulation based on a corotational shell finite element. AIAA J 49(1):128–142

    Article  Google Scholar 

  30. Cho H, Shin S, Yoh JJ (2017) Geometrically nonlinear quadratic solid/solid-shell element based on consistent corotational approach. Int J Numer Methods Eng 112(5):434–458

    Article  Google Scholar 

  31. Shi J, Liu Z, Hong J (2018) Multibody dynamic analysis using a rotation-free shell element with corotational frame. Acta Mech Sin

  32. Battini JM, Pacoste C (2006) On the choice of the linear element for corotational triangular shells. Comput Methods Appl Mech Eng 195(44–47):6362–6377 Kindly provide volume and page range for the Reference [31]

    Article  MATH  Google Scholar 

  33. Mostafa M, Sivaselvan MV (2014) On best-fit corotated frames for 3D continuum finite elements. Int J Numer Methods Eng 98(2):105–130

    Article  MathSciNet  MATH  Google Scholar 

  34. Izzuddin BA, Liang Y (2016) Bisector and zero-macrospin co-rotational systems for shell elements. Int J Numer Methods Eng 105(4):286–320

    Article  MathSciNet  Google Scholar 

  35. Crisfield MA, Moita GF (1996) A unified co-rotational framework for solids shells and beams. Int J Solids Struct 33(20–22):2969–2992

    Article  MATH  Google Scholar 

  36. Battini JM (2015) The corotational method: an alternative to derive nonlinear finite elements. In: Fifteenth international conference on civil, structural and environmental engineering computing, Prague, Czech Republic, 1–4 Sept

  37. Ghosh S, Roy D (2010) On the relation between rotation increments in different tangent spaces. Mech Res Commun 37(6):525–530

    Article  MATH  Google Scholar 

  38. Rankin CC, Nour-Omid B (1988) The use of projectors to improve finite element performance. Comput Struct 30(1–2):257–267

    Article  MATH  Google Scholar 

  39. Spurrier RA (1978) Comment on singularity-free extraction of a quaternion from a direction-cosine matrix. J Spacecr Rockets 15(4):255

    Article  Google Scholar 

  40. Pujol J (2014) On Hamiltons nearly-forgotten early work on the relation between rotations and quaternions and on the composition of rotations. Am Math Mon 121(6):515–522

    Article  MathSciNet  MATH  Google Scholar 

  41. Pacoste C, Eriksson A (1997) Beam elements in instability problems. Comput Methods Appl Mech Eng 144(1–2):163–197

    Article  MATH  Google Scholar 

  42. Felippa CA (2003) A study of optimal membrane triangles with drilling freedoms. Comput Methods Appl Mech Eng 192(16–18):2125–2168

    Article  MATH  Google Scholar 

  43. Batoz JL, Bathe KJ, Ho LW (1980) A study of three-node triangular plate bending elements. Int J Numer Methods Eng 15(2):1771–1812

    Article  MATH  Google Scholar 

  44. Sze KY, Liu XH, Lo SH (2004) Popular benchmark problems for geometric nonlinear analysis of shells. Finite Elem Anal Des 40(11):1551–1569

    Article  Google Scholar 

  45. Yang YB, Shieh MS (1990) Solution method for nonlinear problems with multiple critical points. AIAA J 28(12):2110–2116

    Article  Google Scholar 

  46. Basar Y, Ding Y (1990) Finite-rotation shell elements for the nonlinear analysis of thin shell structures. Int J Solids Struct 26(1):83–97

    Article  MATH  Google Scholar 

  47. Stander N, Matzenmiller A, Ramm E (1984) An assessment of assumed strain methods in finite rotation shell analysis. Eng Comput 6(1):58–66

    Article  Google Scholar 

  48. Wriggers P, Gruttmann F (1993) Thin shells with finite rotations formulated in biot stresses: theory and finite element formulation. Int J Numer Methods Eng 36(12):2049–2071

    Article  MATH  Google Scholar 

  49. Goto Y, Watanable Y, Kasugai T, Obata M (1992) Elastic buckling phenomenon applicable to deployable rings. Int J Solids Struct 29(7):893–909

    Article  Google Scholar 

  50. Rebel G (1998) Finite rotation shell theory including drill rotations and its finite element implementation. Ph.D. Dissertation, Aerospace Engineering, Delft University of Technology

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pinqi Xia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Xia, P. Rotation vector and its complement parameterization for singularity-free corotational shell element formulations. Comput Mech 64, 789–805 (2019). https://doi.org/10.1007/s00466-019-01681-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-019-01681-8

Keywords

Navigation