Skip to main content
Log in

Multibody dynamic analysis using a rotation-free shell element with corotational frame

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Rotation-free shell formulation is a simple and effective method to model a shell with large deformation. Moreover, it can be compatible with the existing theories of finite element method. However, a rotation-free shell is seldom employed in multibody systems. Using a derivative of rigid body motion, an efficient nonlinear shell model is proposed based on the rotation-free shell element and corotational frame. The bending and membrane strains of the shell have been simplified by isolating deformational displacements from the detailed description of rigid body motion. The consistent stiffness matrix can be obtained easily in this form of shell model. To model the multibody system consisting of the presented shells, joint kinematic constraints including translational and rotational constraints are deduced in the context of geometric nonlinear rotation-free element. A simple node-to-surface contact discretization and penalty method are adopted for contacts between shells. A series of analyses for multibody system dynamics are presented to validate the proposed formulation. Furthermore, the deployment of a large scaled solar array is presented to verify the comprehensive performance of the nonlinear shell model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Bauchau, O.A., Choi, Y., Bottasso, C.L.: On the modeling of shells in multibody dynamics. Multibody Syst. Dyn. 8, 459–489 (2002)

    Article  MATH  Google Scholar 

  2. Pappalardo, C.M., Wallin, M., Shabana, A.A.: A new ANCF/CRBF fully parameterized plate finite element. J. Comput. Nonlinear Dyn. 12(3), 031008 (2016)

    Article  Google Scholar 

  3. Ren, H.: A simple absolute nodal coordinate formulation for thin beams with large deformations and large rotations. J. Comput. Nonlinear Dyn. 10(6), 061005 (2015)

    Article  Google Scholar 

  4. Pavan, G.S., Nanjunda Rao, K.S.: Bending analysis of laminated composite plates using isogeometric collocation method. Compos. Struct. 176, 715–728 (2017)

    Article  Google Scholar 

  5. Liu, Z.Y., Liu, J.Y.: Experimental validation of rigid-flexible coupling dynamic formulation for hub-beam system. Multibody Syst. Dyn. 40(3), 303–326 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Wempner, G.: Finite elements, finite rotations and small strains of flexible shells. Int. J. Solids Struct. 5(15), 117–153 (1969)

    Article  MATH  Google Scholar 

  7. Belytschko, T., Schwer, L., Klein, M.J.: Large displacement, transient analysis of space frames. Int. J. Numer. Methods Eng. 1, 65–84 (1977)

    Article  MATH  Google Scholar 

  8. Rankin, C.C., Brogan, F.A.: An element independent corotational procedure for the treatment of large rotations. J. Press. Vessel Technol. 108, 165–174 (1986)

    Article  Google Scholar 

  9. Chimakurthi, S.K., Cesnik, C.E.S., Stanford, B.K.: Flapping-wing structural dynamics formulation based on a corotational shell finite element. AIAA J. 49(1), 128–142 (2011)

    Article  Google Scholar 

  10. Cho, H., Shin, S.J., Yoh, J.J.: Geometrically nonlinear quadratic solid/solid-shell element based on consistent corotational approach for structural analysis under prescribed motion. Int. J. Numer. Methods Eng. 112(5), 434–458 (2017)

    Article  MathSciNet  Google Scholar 

  11. Faroughi, S., Eriksson, A.: Co-rotational formulation for dynamic analysis of space membranes based on triangular elements. Int. J. Mech. Mater. Des. 13(2), 229–241 (2017)

    Article  Google Scholar 

  12. Sabourin, F., Brunet, M.: Detailed formulation of the rotation-free triangular element S3 for general purpose shell analysis. Eng. Comput. 23(5), 469–502 (2006)

    Article  MATH  Google Scholar 

  13. Guo, Y.Q., Gati, W., Naceur, H., et al.: An efficient DKT rotation free shell element for springback simulation in sheet metal forming. Compos. Struct. 80, 2299–2312 (2002)

    Article  Google Scholar 

  14. Oñate, E., Cervera, M.: Derivation of thin plate bending elements with one degree of freedom per node: a simple three node triangle. Eng. Comput. 10(6), 543–561 (1993)

    Article  Google Scholar 

  15. Flores, F.G., Oñate, E.: Wrinkling and folding analysis of elastic membranes using an enhanced rotation-free thin shell triangular element. Finite Elem. Anal. Des. 47(9), 982–990 (2011)

    Article  MathSciNet  Google Scholar 

  16. Phaal, R., Calladine, C.R.: Simple class of finite elements for plate and shell problems. II: an element for thin shells, with only translational degrees of freedom. Int. J. Numer. Methods Eng. 35(5), 979–996 (1992)

    Article  MATH  Google Scholar 

  17. Zhou, Y.X., Sze, K.Y.: A geometric nonlinear rotation-free triangle and its application to drape simulation. Int. J. Numer. Methods Eng. 89, 509–536 (2011)

    Article  MATH  Google Scholar 

  18. Das, M., Barut, A., Madenci, E.: Analysis of multibody systems experiencing large elastic deformations. Multibody Syst. Dyn. 23(1), 1–31 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liu, C., Tian, Q., Hu, H.Y.: Dynamics of a large scale rigid-flexible multibody system composed of composite laminated plates. Multibody Syst. Dyn. 26(3), 283–305 (2011)

    Article  MATH  Google Scholar 

  20. Nour-Omid, B., Rankin, C.C.: Finite rotation analysis and consistent linearization using projectors. Comput. Methods Appl. Mech. Eng. 93(3), 353–384 (1991)

    Article  MATH  Google Scholar 

  21. Battini, J.: A modified corotational framework for triangular shell elements. Comput. Methods Appl. Mech. Eng. 196(13–16), 1905–1914 (2007)

    Article  MATH  Google Scholar 

  22. Shabana, A.A.: Dynamics of Multibody Systems, 3rd edn. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  23. Felippa, C.A., Haugen, B.: A unified formulation of small-strain corotational finite elements: I. Theory. Comput. Methods Appl. Mech. Eng. 194(21–24), 2285–2335 (2005)

    Article  MATH  Google Scholar 

  24. Wriggers, P.: Computational Contact Mechanics. Springer, Berlin, Heidelberg (2006)

    Book  MATH  Google Scholar 

  25. Liu, C., Tian, Q., Hu, H.Y.: New spatial curved beam and cylindrical shell elements of gradient-deficient Absolute Nodal Coordinate Formulation. Nonlinear Dyn. 70(3), 1903–1918 (2012)

    Article  MathSciNet  Google Scholar 

  26. Xie, Q., Sze, K.Y., Zhou, Y.X.: Drape simulation using solid-shell elements and adaptive mesh subdivision. Finite Elem. Anal. Des. 106, 85–102 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grants 11772188, 11132007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuyong Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, J., Liu, Z. & Hong, J. Multibody dynamic analysis using a rotation-free shell element with corotational frame. Acta Mech. Sin. 34, 769–780 (2018). https://doi.org/10.1007/s10409-018-0763-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-018-0763-2

Keywords

Navigation