Skip to main content
Log in

Generalized modal element method: part-I—theory and its application to eight-node asymmetric and symmetric solid elements in linear analysis

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In this paper, a new finite element method, termed the generalized modal element method (GMEM), is proposed. In GMEM, the element stiffness is derived by decomposing element deformation patterns into individual element generalized modes, where different methods are used to construct the generalized modes. Specifically, three different modal construction methods, including analytical method, assumed displacement method and traditional finite element technique, are proposed for developing the element generalized modes. The concept of modal local coordinate systems is also proposed to ensure the element frame invariance when using polynomial displacement functions, which successfully enables one to use the analytical solutions derived from governing differential equations to develop high accuracy element formulations. An asymmetric hexahedral solid element and a symmetric hexahedral solid element are subsequently derived by using GMEM. The displacement functions of the elemental 24 generalized modes are expressed in terms of Cartesian coordinates so that the element behavior is independent of mesh distortions. Furthermore, the first 21 generalized modes are derived from analytical method making the element capable of avoiding common locking phenomena. Several benchmark problems are performed to demonstrate the accuracy and performance of the new element formulations in linear static and frequency analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35

Similar content being viewed by others

References

  1. Zhu J, Taylor ZRL, Zienkiewicz OC (2005) The finite element method: its basis and fundamentals. Butterworth-Heinemann, Burlington

    MATH  Google Scholar 

  2. Li Q, Liu Y, Zhang Z, Zhong W (2015) A new reduced integration solid-shell element based on EAS and ANS with hourglass stabilization. Int J Numer Meth Eng 104(8):805–826

    Article  MathSciNet  MATH  Google Scholar 

  3. Caseiro JF, de Sousa RJA, Valente RAF (2013) A systematic development of EAS three-dimensional finite elements for the alleviation of locking phenomena. Finite Elem Anal Des 73:30–41

    Article  Google Scholar 

  4. Sze KY (1994) Stabilization schemes for 12-node to 21-node brick elements based on orthogonal and consistently assumed stress modes. Comput Methods Appl Mech Eng 119(3–4):325–340

    Article  MATH  Google Scholar 

  5. Nadler B, Rubin MB (2003) A new 3-D finite element for nonlinear elasticity using the theory of a Cosserat point. Int J Solids Struct 40(17):4585–4614

    Article  MATH  Google Scholar 

  6. Jabareen M, Rubin M (2008) A generalized Cosserat point element (CPE) for isotropic nonlinear elastic materials including irregular 3-D brick and thin structures. J Mech Mater Struct 3(8):1465–1498

    Article  Google Scholar 

  7. Jabareen M, Sharipova L, Rubin MB (2012) Cosserat point element (CPE) for finite deformation of orthotropic elastic materials. Comput Mech 49(4):525–544

    Article  MathSciNet  MATH  Google Scholar 

  8. Jabareen M, Rubin MB (2007) Hyperelasticity and physical shear buckling of a block predicted by the Cosserat point element compared with inelasticity and hourglassing predicted by other element formulations. Comput Mech 40(3):447–459

    Article  MATH  Google Scholar 

  9. Hughes TJR, Tezduyar TE (1981) Finite elements based upon mindlin plate theory with particular reference to the four-node bilinear iso-parametric element. J Appl Mech 48:587–596

    Article  MATH  Google Scholar 

  10. Cardoso RPR, Yoon JW, Mahardika M, Choudhry S, Alves De Sousa RJ, Fontes Valente RA (2008) Enhanced assumed strain (EAS) and assumed natural strain (ANS) methods for one-point quadrature solid-shell elements. Int J Numer Methods Eng 75:156–187

    Article  MathSciNet  MATH  Google Scholar 

  11. Hauptmann R, Schweizerhof K, Doll S (2000) Extension of the ‘solid-shell’ concept for application to large elastic and large elastoplastic deformations. Int J Numer Methods Eng 49:1121–1141

    Article  MATH  Google Scholar 

  12. Klinkel S, Gruttmann F, Wagner W (2006) A robust non-linear solid shell element based on a mixed variational formulation. Comput Methods Appl Mech Eng 195:179–201

    Article  MATH  Google Scholar 

  13. Schwarze M, Reese S (2009) A reduced integration solid–shell finite element based on the EAS and the ANS concepts: geometrically linear problems. Int J Numer Methods Eng 80:1322–1355

    Article  MathSciNet  MATH  Google Scholar 

  14. Argyris JH, Tenek L, Olofsson L (1997) TRIC: a simple but sophisticated 3-node triangular element based on 6 rigid body and 12 straining modes for fast computational simulations of arbitrary isotropic and laminated composite shells. Comput Methods Appl Mech Eng 145:11–85

    Article  MATH  Google Scholar 

  15. Argyris J, Papadrakakis M, Mouroutis ZS (2003) Nonlinear dynamic analysis of shells with the triangular element TRIC. Comput Methods Appl Mech Eng 192:3005–3038

    Article  MATH  Google Scholar 

  16. Zienkiewicz OC, Taylor RL, Too JM (1971) Reduced integration technique in general analysis of plates and shells. Int J Numer Methods Eng 3:275–290

    Article  MATH  Google Scholar 

  17. Hughes TJR, Cohen M, Haroun M (1978) Reduced and selective integration techniques in finite element analysis of plates. Nucl Eng Des 46:203–222

    Article  Google Scholar 

  18. Wilson EL, Taylor RL, Doherty WP, Ghaboussi J (1973) Incompatible displacement models. Academic Press, New York

    Book  Google Scholar 

  19. Taylor RL, Beresford PJ, Wilson EL (1976) A non-conforming element for stress analysis. Int J Numer Methods Eng 10:1211–1219

    Article  MATH  Google Scholar 

  20. Simo JC, Rifai MS (1990) A class of mixed assumed strain methods and the method of incompatible modes. Int J Numer Methods Eng 29:1595–1638

    Article  MathSciNet  MATH  Google Scholar 

  21. Vu-Quoc L, Tan X (2013) Efficient hybrid-EAS solid element for accurate stress prediction in thick laminated beams, plates, and shells. Comput Methods Appl Mech Eng 253:337–355

    Article  MathSciNet  MATH  Google Scholar 

  22. Sousa RJAD, Jorge RMN, Valente RAF (2003) A new volumetric and shear locking-free 3D enhanced strain element. Eng Comput 20:896–925

    Article  MATH  Google Scholar 

  23. Alves DSRJ, Cardoso RPR, Fontes VRA et al (2005) A new one-point quadrature enhanced assumed strain (EAS) solid-shell element with multiple integration points along thickness: part I—geometrically linear applications. Int J Numer Methods Eng 62(7):952–977

    Article  MATH  Google Scholar 

  24. Lee NS, Bathe KJ (1993) Effects of element distortion on the performance of iso-parametric elements. Int J Numer Methods Eng 36:3553–3576

    Article  MATH  Google Scholar 

  25. Macneal RH (1987) A theorem regarding the locking of tapered four-noded membrane elements. Int J Numer Methods Eng 24:1793–1799

    Article  MATH  Google Scholar 

  26. Cen S, Zhou P, Li C et al (2015) An asymmetric 4-node, 8-DOF plane membrane element perfectly breaking through MacNeal’s theorem. Int J Numer Methods Eng 103(7):469–500

    Article  MATH  Google Scholar 

  27. Zhou P, Cen S, Huang J et al (2017) An asymmetric 8-node hexahedral element with high distortion tolerance. Int J Numer Methods Eng 109:8

    Google Scholar 

  28. Xie Q, Sze KY, Zhou YX (2016) Modified and Trefftz asymmetric finite element models. Int J Mech Mater Des 12(1):53–70

    Article  Google Scholar 

  29. Bhavikatti SS (2000) Finite element analysis. New Age International, New Delhi

    Google Scholar 

  30. MacNeal RH (1978) A simple quadrilateral shell element. Comput Struct 8:175–183

    Article  MATH  Google Scholar 

  31. Nastran MSC (2012) Linear static analysis user’s guide. The MacNeal-Schwendler Corporation, Santa Ana

    Google Scholar 

  32. MacNeal RH, Harder RL (1985) A proposed standard set of problems to test finite element accuracy. Finite Elem Anal Des 1:3–20

    Article  Google Scholar 

  33. Kasper EP, Taylor RL (2000) A mixed-enhanced strain method: Part I-linear problems. Comput Struct 75:237–250

    Article  Google Scholar 

  34. Li HG, Cen S, Cen ZZ (2008) Hexahedral volume coordinate method (HVCM) and improvements on 3D Wilson hexahedral element. Comput Methods Appl Mech Eng 197(51):4531–4548

    Article  MATH  Google Scholar 

  35. Pian THH, Sumihara K (1984) Rational approach for assumed stress finite elements. Int J Numer Methods Eng 20:1685–1695

    Article  MATH  Google Scholar 

  36. Simo JC, Fox DD, Rifai MS (1989) On a stress resultant geometrically exact shell model: Part II—the linear theory-computational aspects. Comput Methods Appl Mech Eng 73:53–92

    Article  MATH  Google Scholar 

  37. Fredriksson M, Ottosen NS (2007) Accurate eight-node hexahedral element. Int J Numer Methods Eng 72:631–657

    Article  MATH  Google Scholar 

  38. ABAQUS Inc. (2004) ABAQUS documentation version 6.5. ABAQUS Inc., Rawtucket

    Google Scholar 

  39. Cao C, Qin Q-H, Yu A (2012) A new hybrid finite element approach for three-dimensional elastic problems. Arch Mech 64(3):261–292

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Nos. 51375386, 11602286).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. Sun.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, P.Q., Sun, Q. & Liang, K. Generalized modal element method: part-I—theory and its application to eight-node asymmetric and symmetric solid elements in linear analysis. Comput Mech 63, 755–781 (2019). https://doi.org/10.1007/s00466-018-1618-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-018-1618-1

Keywords

Navigation