Skip to main content
Log in

Modified unified co-rotational framework with beam, shell and brick elements for geometrically nonlinear analysis

用于梁、板壳、体单元几何非线性分析的改进的统一共旋框架

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The co-rotational finite element formulation is an attractive technique extending the capabilities of an existing high performing linear element to geometrically nonlinear analysis. This paper presents a modified co-rotational framework, unified for beam, shell, and brick elements. A unified zero-spin criterion is proposed to specify the local element frame, whose origin is always located at the centroid. Utilizing this criterion, a spin matrix is introduced, and the local frame is invariant to the element nodal ordering. Additionally, the projector matrix is redefined in a more intuitive way, which is the derivative of local co-rotational element frame with respect to the global one. Furthermore, the nodal rotation is obtained with pseudo vector and instantaneous rotation, under a high-order accurate transformation. The resulting formulations are achieved in unified expression and thus a series of linear elements can be embedded into the framework. Several examples are presented to demonstrate the efficiency and accuracy of the proposed framework for large displacement analysis.

摘要

共旋方法是一种近年来受到广泛关注的技术, 其可将现有的高性能线性单元扩展用于几何非线性分析. 本文提出了一种改进的梁、板壳、体单元统一的共旋框架. 提出了统一零自旋准则来确定原点始终位于单元质心的共旋坐标系. 通过引入自旋矩阵, 共旋坐标系与单元节点顺序无关. 基于共旋坐标系与全局坐标系中变量的关系, 更加直观地定义了投影矩阵. 同时, 单元转动通过伪矢量与瞬时旋转轴之间的高阶转换获得. 本文给出了统一的表达式, 以便于将一系列线性单元应用于求解框架. 给出了几个大位移分析数值算例, 结果表明本文改进的方法具有较高的效率和求解精度.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Nguyen, M. Zehn, and D. Marinković, An efficient co-rotational fem formulation using a projector matrix, Facta Universitat. Mech. Eng. 14, 227 (2016).

    Article  Google Scholar 

  2. D. Marinkovic, M. Zehn, and G. Rama, Towards real-time simulation of deformable structures by means of co-rotational finite element formulation, Meccanica 53, 3123 (2018).

    Article  MathSciNet  Google Scholar 

  3. Y. C. Yao, W. X. Huang, and C. X. Xu, Amplitude modulation and extreme events in turbulent channel flow, Acta Mech. Sin. 34, 1 (2018).

    Article  Google Scholar 

  4. D. Marinković, G. Rama, and M. Zehn, Abaqus implementation of a corotational piezoelectric 3-node shell element with drilling degree of freedom, Facta Universitat. Mech. Eng. 17, 269 (2019).

    Article  Google Scholar 

  5. W. L. Li, X. D. Zhi, D. Z. Wang, F. Fan, and S. Z. Shen, Influence of a roofing system on the static stability of reticulated shells, Adv. Steel Construct. 16, 363 (2020).

    Google Scholar 

  6. G. Wei, Y. Jin, and L. Wu, Geometric and material nonlinearities of sandwich beams under static loads, Acta Mech. Sin. 36, 97 (2020).

    Article  MathSciNet  Google Scholar 

  7. C. C. Rankin, and F. A. Brogan, An element independent corotational procedure for the treatment of large rotations, J. Pressure Vessel Tech. 108, 152 (1986).

    Article  Google Scholar 

  8. C. Rankin, and B. Nour-Omid, The use of projectors to improve finite element performance, Comput. Struct. 30, 257 (1988).

    Article  Google Scholar 

  9. B. Nour-Omid, and C. C. Rankin, Finite rotation analysis and consistent linearization using projectors, Comput. Methods Appl. Mech. Eng. 93, 353 (1991).

    Article  Google Scholar 

  10. Z. Wang, and Q. Sun, Corotational nonlinear analyses of laminated shell structures using a 4-node quadrilateral flat shell element with drilling stiffness, Acta Mech. Sin. 30, 418 (2014).

    Article  MathSciNet  Google Scholar 

  11. Y. Q. Tang, Y. P. Liu, and S. L. Chan, A co-rotational framework for quadrilateral shell elements based on the pure deformational method, Adv. Steel Construct. 14, 90 (2018).

    Google Scholar 

  12. Y. Q. Tang, Y. P. Liu, S. L. Chan, and E. F. Du, An innovative co-rotational pointwise equilibrating polynomial element based on Timoshenko beam theory for second-order analysis, Thin-Walled Struct. 141, 15 (2019).

    Article  Google Scholar 

  13. Y. Q. Tang, Z. H. Zhou, and S. L. Chan, A simplified co-rotational method for quadrilateral shell elements in geometrically nonlinear analysis, Int. J. Numer. Methods Eng. 112, 1519 (2017).

    Article  MathSciNet  Google Scholar 

  14. G. F. Moita, and M. A. Crisfield, A finite element formulation for 3d continua using the co-rotational technique, Int. J. Numer. Methods Eng. 39, 3775 (1996).

    Article  Google Scholar 

  15. M. Mostafa, M. V. Sivaselvan, and C. A. Felippa, A solid-shell corotational element based on ANDES, ANS and EAS for geometrically nonlinear structural analysis, Int. J. Numer. Methods Eng. 95, 145 (2013).

    Article  MathSciNet  Google Scholar 

  16. H. Cho, S. J. Shin, and J. J. Yoh, Geometrically nonlinear quadratic solid/solid-shell element based on consistent corotational approach for structural analysis under prescribed motion, Int. J. Numer. Methods Eng. 112, 434 (2017).

    Article  MathSciNet  Google Scholar 

  17. M. A. Crisfield, and G. F. Moita, A unified co-rotational framework for solids, shells and beams, Int. J. Solids Struct. 33, 2969 (1996).

    Article  Google Scholar 

  18. J. Argyris, An excursion into large rotations, Comput. Methods Appl. Mech. Eng. 32, 85 (1982).

    Article  MathSciNet  Google Scholar 

  19. C. A. Felippa, and B. Haugen, A unified formulation of small-strain corotational finite elements: I. Theory, Comput. Methods Appl. Mech Eng. 194, 2285 (2005).

    Article  Google Scholar 

  20. Z. Wang, and Q. Sun, Stability analysis of spatial beams based on the corotational formulation, Acta Mech. Sol. Sin. 35, 49 (2014).

    Google Scholar 

  21. J. M. Battini, Large rotations and nodal moments in corotational elements, Comput. Model. Eng. Sci. 33, 1 (2008).

    MathSciNet  MATH  Google Scholar 

  22. C. Rankin, On choice of best possible corotational element frame, Model. Simul. Based Eng. 1, 772 (1998).

    Google Scholar 

  23. B. A. Izzuddin, An enhanced co-rotational approach for large displacement analysis of plates, Int. J. Numer. Methods Eng. 64, 1350 (2005).

    Article  Google Scholar 

  24. B. A. Izzuddin, and Y. Liang, Bisector and zero-macrospin corotational systems for shell elements, Int. J. Numer. Methods Eng. 105, 286 (2016).

    Article  Google Scholar 

  25. J. M. Battini, and C. Pacoste, On the choice of local element frame for corotational triangular shell elements, Commun. Numer. Methods Eng. 20, 819 (2004).

    Article  Google Scholar 

  26. B. F. De Veubeke, The dynamics of flexible bodies, Int. J. Eng. Sci. 14, 895 (1976).

    Article  Google Scholar 

  27. J. C. Simo, and L. Vu-Quoc, A three-dimensional finite-strain rod model. part II: Computational aspects, Comput. Methods Appl. Mech. Eng. 58, 79 (1986).

    Article  Google Scholar 

  28. K. J. Bathe, and S. Bolourchi, Large displacement analysis of three-dimensional beam structures, Int. J. Numer. Methods Eng. 14, 961 (1979).

    Article  Google Scholar 

  29. M. A. Crisfield, A consistent co-rotational formulation for non-linear, three-dimensional, beam-elements, Comput. Methods Appl. Mech. Eng. 81, 131 (1990).

    Article  Google Scholar 

  30. A. Ibrahimbegović, F. Frey, and I. Kožar, Computational aspects of vector-like parametrization of three-dimensional finite rotations, Int. J. Numer. Methods Eng. 38, 3653 (1995).

    Article  MathSciNet  Google Scholar 

  31. Z. Wang, and Q. Sun, Geometrically nonlinear analysis using a corotational triangular thick and thin shell element, Eng. Mech. 31, 27 (2014).

    Google Scholar 

  32. K. Y. Sze, X. H. Liu, and S. H. Lo, Popular benchmark problems for geometric nonlinear analysis of shells, Finite Elem. Anal. Des. 40, 1551 (2004).

    Article  Google Scholar 

  33. P. Q. He, Q. Sun, and K. Liang, Generalized modal element method: part-I—theory and its application to eight-node asymmetric and symmetric solid elements in linear analysis, Comput. Mech. 63, 755 (2019).

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11972297 and 11972300) and the Fundamental Research Funds for the Central Universities of China (Grant No. G2019KY05203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Sun  (孙秦).

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rong, Y., Sun, Q. & Liang, K. Modified unified co-rotational framework with beam, shell and brick elements for geometrically nonlinear analysis. Acta Mech. Sin. 38, 421136 (2022). https://doi.org/10.1007/s10409-021-09081-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-021-09081-x

Navigation