Skip to main content

Advertisement

Log in

Modulation of lipase B from Candida antarctica properties via covalent immobilization on eco-friendly support for enzymatic kinetic resolution of rac-indanyl acetate

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

In this study, the modulation of enzymatic biocatalysts were developed by the use of lipase B from Candida antarctica covalently immobilized on an eco-friendly support, cashew apple bagasse, activated with 10% glycidol–ethylenediamine–glutaraldehyde (GEG) under different immobilization strategies (5 mM or 100 mM ionic strength and in absence or presence of 0.5% (v/v) Triton X-100). The biocatalysts were characterized for thermal and organic solvents stabilities and compared with the soluble enzyme. The biocatalysts were then applied to the hydrolysis of the rac-indanyl acetate (2:1 ratio enzyme/substrate) at pH 7.0 and 30 °C for 24 h. For all the strategies evaluated, GEG promoted kinetic resolution of rac-indanyl acetate with maximum conversion (50%) and led to (R)-indanol with excellent enantiomeric excess (97%), maintaining the maximum conversion for five consecutive cycles of hydrolysis. Therefore, the use of cashew apple bagasse has proved to be a promising eco-friendly support for enzyme immobilization, since it resulted in stable biocatalysts for enzymatic kinetic resolution.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yücel Y (2012) Optimization of immobilization conditions of Thermomyces lanuginosus lipase on olive pomace powder using response surface methodology. Biocatal Agric Biotechnol 1:39–44. https://doi.org/10.1016/j.bcab.2011.08.009

    Article  CAS  Google Scholar 

  2. Sheldon RA, Van Pelt S (2013) Enzyme immobilisation in biocatalysis: why, what and how. Chem Soc Rev 42:6223–6235. https://doi.org/10.1039/C3CS60075K

    Article  CAS  PubMed  Google Scholar 

  3. Liese A, Hilterhaus L (2013) Evaluation of immobilized enzymes for industrial applications. Chem Soc Rev 42:6236. https://doi.org/10.1039/c3cs35511j

    Article  CAS  PubMed  Google Scholar 

  4. Homaei AA, Sariri R, Vianello F, Stevanato R (2013) Enzyme immobilization: an update. J Chem Biol 6:185–205. https://doi.org/10.1007/s12154-013-0102-9

    Article  PubMed  PubMed Central  Google Scholar 

  5. Rodrigues RC, Ortiz C, Berenguer-Murcia Á et al (2013) Modifying enzyme activity and selectivity by immobilization. Chem Soc Rev 42:6290–6307. https://doi.org/10.1039/C2CS35231A

    Article  CAS  PubMed  Google Scholar 

  6. dos Santos JCS, Garcia-Galan C, Rodrigues RC et al (2014) Stabilizing hyperactivated lecitase structures through physical treatment with ionic polymers. Process Biochem 49:1511–1515. https://doi.org/10.1016/j.procbio.2014.05.009

    Article  CAS  Google Scholar 

  7. Suescun A, Rueda N, Dos Santos JCS et al (2015) Immobilization of lipases on glyoxyl-octyl supports: improved stability and reactivation strategies. Process Biochem. https://doi.org/10.1016/j.procbio.2015.05.010

    Article  Google Scholar 

  8. Fernandez-Lopez L, Bartolome-Cabrero R, Rodriguez MD et al (2015) Stabilizing effects of cations on lipases depend on the immobilization protocol. RSC Adv 5:83868–83875. https://doi.org/10.1039/C5RA18344H

    Article  CAS  Google Scholar 

  9. Rodrigues C, Hernandez K, Barbosa O et al (2015) Immobilization of proteins in poly-styrene-divinylbenzene matrices: functional properties and applications. Curr Org Chem 19:1707–1718. https://doi.org/10.2174/1385272819666150429231728

    Article  CAS  Google Scholar 

  10. Verdasco-Martín CM, Villalba M, dos Santos JCS et al (2016) Effect of chemical modification of Novozym 435 on its performance in the alcoholysis of camelina oil. Biochem Eng J 111:75–86. https://doi.org/10.1016/j.bej.2016.03.004

    Article  CAS  Google Scholar 

  11. Badgujar KC, Pai PA, Bhanage BM (2016) Enhanced biocatalytic activity of immobilized Pseudomonas cepacia lipase under sonicated condition. Bioprocess Biosyst Eng 39:211–221. https://doi.org/10.1007/s00449-015-1505-5

    Article  CAS  PubMed  Google Scholar 

  12. Cantone S, Ferrario V, Corici L et al (2013) Efficient immobilisation of industrial biocatalysts: criteria and constraints for the selection of organic polymeric carriers and immobilisation methods. Chem Soc Rev 42:6262. https://doi.org/10.1039/c3cs35464d

    Article  CAS  PubMed  Google Scholar 

  13. DiCosimo R, McAuliffe J, Poulose AJ, Bohlmann G (2013) Industrial use of immobilized enzymes. Chem Soc Rev 42:6437. https://doi.org/10.1039/c3cs35506c

    Article  CAS  PubMed  Google Scholar 

  14. Pinheiro MP, Monteiro RRC, Silva FFM et al (2019) Modulation of Lecitase properties via immobilization on differently activated Immobead-350: stabilization and inversion of enantiospecificity. Process Biochem 87:128–137. https://doi.org/10.1016/j.procbio.2019.08.016

    Article  CAS  Google Scholar 

  15. Garcia-Galan C, Berenguer-Murcia Á, Fernandez-Lafuente R, Rodrigues RC (2011) Potential of different enzyme immobilization strategies to improve enzyme performance. Adv Synth Catal 353:2885–2904. https://doi.org/10.1002/adsc.201100534

    Article  CAS  Google Scholar 

  16. Katchalski-Katzir E, Kraemer DM (2000) Eupergit® C, a carrier for immobilization of enzymes of industrial potential. J Mol Catal B Enzyme 10:157–176. https://doi.org/10.1016/S1381-1177(00)00124-7

    Article  CAS  Google Scholar 

  17. Luzia C, Reis B, Yvay E et al (2019) Design of immobilized enzyme biocatalysts: drawbacks and opportunities. Quim Nov 42:768–783

    Google Scholar 

  18. Vieira DC, Lima LN, Mendes AA et al (2013) Hydrolysis of lactose in whole milk catalyzed by β-galactosidase from Kluyveromyces fragilis immobilized on chitosan-based matrix. Biochem Eng J 81:54–64. https://doi.org/10.1016/j.bej.2013.10.007

    Article  CAS  Google Scholar 

  19. dos Santos JCS, Barbosa O, Ortiz C et al (2015) Importance of the support properties for immobilization or purification of enzymes. ChemCatChem 7:2413–2432. https://doi.org/10.1002/cctc.201500310

    Article  CAS  Google Scholar 

  20. Pelizer LH, de Moraes I (2014) A method to estimate the biomass of Spirulina platensis cultivated on a solid medium. Braz J Microbiol 45:933–936. https://doi.org/10.1590/S1517-83822014000300024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vemuri G, Banerjee R, Bhattacharyya BC (1998) Immobilization of lipase using egg shell and alginate as carriers: optimization of reaction conditions. Bioprocess Eng 19:111. https://doi.org/10.1007/s004490050490

    Article  CAS  Google Scholar 

  22. Ramani K, Sekaran G (2012) Production of lipase from Pseudomonas gessardii using blood tissue lipid and thereof for the hydrolysis of blood cholesterol and triglycerides and lysis of red blood cells. Bioprocess Biosyst Eng 35:885–896. https://doi.org/10.1007/s00449-011-0673-1

    Article  CAS  PubMed  Google Scholar 

  23. Lima LCD, Peres DGC, Mendes AA (2018) Kinetic and thermodynamic studies on the enzymatic synthesis of wax ester catalyzed by lipase immobilized on glutaraldehyde-activated rice husk particles. Bioprocess Biosyst Eng 41:991–1002. https://doi.org/10.1007/s00449-018-1929-9

    Article  CAS  PubMed  Google Scholar 

  24. Saranya P, Selvi PK, Sekaran G (2019) Integrated thermophilic enzyme-immobilized reactor and high-rate biological reactors for treatment of palm oil-containing wastewater without sludge production. Bioprocess Biosyst Eng 42:1053–1064. https://doi.org/10.1007/s00449-019-02104-x

    Article  CAS  PubMed  Google Scholar 

  25. Rodrigues THS, Rocha MVP, De MacEdo GR, Gonçalves LRB (2011) Ethanol production from cashew apple bagasse: improvement of enzymatic hydrolysis by microwave-assisted alkali pretreatment. Appl Biochem Biotechnol 164:929–943. https://doi.org/10.1007/s12010-011-9185-3

    Article  CAS  PubMed  Google Scholar 

  26. dos Santos JCS, Rueda N, Barbosa O et al (2015) Characterization of supports activated with divinyl sulfone as a tool to immobilize and stabilize enzymes via multipoint covalent attachment. Application to chymotrypsin. RSC Adv 5:20639–20649. https://doi.org/10.1039/c4ra16926c

    Article  Google Scholar 

  27. Mateo C, Palomo JM, Fernandez-Lorente G et al (2007) Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb Technol 40:1451–1463. https://doi.org/10.1016/j.enzmictec.2007.01.018

    Article  CAS  Google Scholar 

  28. dos Santos JCS, Rueda N, Barbosa O et al (2015) Bovine trypsin immobilization on agarose activated with divinylsulfone: improved activity and stability via multipoint covalent attachment. J Mol Catal B Enzyme 117:38–44. https://doi.org/10.1016/j.molcatb.2015.04.008

    Article  CAS  Google Scholar 

  29. de Souza TC, de Fonseca T, da Costa JA et al (2016) Cashew apple bagasse as a support for the immobilization of lipase B from Candida antarctica: application to the chemoenzymatic production of (R)-Indanol. J Mol Catal B Enzym. https://doi.org/10.1016/j.molcatb.2016.05.007

    Article  Google Scholar 

  30. Pinheiro BB, Rios NS, Rodríguez Aguado E et al (2019) Chitosan activated with divinyl sulfone: a new heterofunctional support for enzyme immobilization. Application in the immobilization of lipase B from Candida antarctica. Int J Biol Macromol 130:798–809. https://doi.org/10.1016/j.ijbiomac.2019.02.145

    Article  CAS  PubMed  Google Scholar 

  31. Barbosa O, Ortiz C, Berenguer-Murcia Á et al (2014) Glutaraldehyde in bio-catalysts design: a useful crosslinker and a versatile tool in enzyme immobilization. RSC Adv 4:1583–1600. https://doi.org/10.1039/C3RA45991H

    Article  CAS  Google Scholar 

  32. Rodrigues RC, Virgen-Ortíz JJ, dos Santos JCS et al (2019) Immobilization of lipases on hydrophobic supports: immobilization mechanism, advantages, problems, and solutions. Biotechnol Adv 37:746–770. https://doi.org/10.1016/j.biotechadv.2019.04.003

    Article  CAS  PubMed  Google Scholar 

  33. Zhang Y, Zhao Y, Gao X et al (2019) Kinetic model of the enzymatic Michael addition for synthesis of mitomycin analogs catalyzed by immobilized lipase from T. laibacchii. Mol Catal 466:146–156. https://doi.org/10.1016/j.mcat.2019.01.017

    Article  CAS  Google Scholar 

  34. Zheng M, Xiang X, Wang S et al (2017) Lipase immobilized in ordered mesoporous silica: a powerful biocatalyst for ultrafast kinetic resolution of racemic secondary alcohols. Process Biochem 53:102–108. https://doi.org/10.1016/j.procbio.2016.12.005

    Article  CAS  Google Scholar 

  35. Urrutia P, Arrieta R, Alvarez L et al (2018) Immobilization of lipases in hydrophobic chitosan for selective hydrolysis of fish oil: the impact of support functionalization on lipase activity, selectivity and stability. Int J Biol Macromol 108:674–686. https://doi.org/10.1016/j.ijbiomac.2017.12.062

    Article  CAS  PubMed  Google Scholar 

  36. Lage FAP, Bassi JJ, Corradini MCC et al (2016) Preparation of a biocatalyst via physical adsorption of lipase from Thermomyces lanuginosus on hydrophobic support to catalyze biolubricant synthesis by esterification reaction in a solvent-free system. Enzyme Microb Technol 84:56–67. https://doi.org/10.1016/j.enzmictec.2015.12.007

    Article  CAS  PubMed  Google Scholar 

  37. Corradini MCC, Costa BM, Bressani APP et al (2017) Improvement of the enzymatic synthesis of ethyl valerate by esterification reaction in a solvent system. Prep Biochem Biotechnol 47:100–109. https://doi.org/10.1080/10826068.2016.1181084

    Article  CAS  PubMed  Google Scholar 

  38. Pinheiro MP, Rios NS, de Fonseca T et al (2018) Kinetic resolution of drug intermediates catalyzed by lipase B from Candida antarctica immobilized on immobead-350. Biotechnol Prog 34:878–889. https://doi.org/10.1002/btpr.2630

    Article  CAS  PubMed  Google Scholar 

  39. Todero LM, Bassi JJ, Lage FAP et al (2015) Enzymatic synthesis of isoamyl butyrate catalyzed by immobilized lipase on poly-methacrylate particles: optimization, reusability and mass transfer studies. Bioprocess Biosyst Eng 38:1601–1613. https://doi.org/10.1007/s00449-015-1402-y

    Article  CAS  PubMed  Google Scholar 

  40. Dos Santos JCS, Rueda N, Torres R et al (2015) Evaluation of divinylsulfone activated agarose to immobilize lipases and to tune their catalytic properties. Process Biochem. https://doi.org/10.1016/j.procbio.2015.03.018

    Article  Google Scholar 

  41. Bolivar JM, Gallego FL (2020) Characterization and evaluation of immobilized enzymes for applications in flow-reactors. Curr Opin Green Sustain Chem. https://doi.org/10.1016/j.cogsc.2020.04.010

    Article  Google Scholar 

  42. Rueda N, dos Santos JCS, Torres R et al (2015) Improved performance of lipases immobilized on heterofunctional octyl-glyoxyl agarose beads. RSC Adv 5:11212–11222. https://doi.org/10.1039/C4RA13338B

    Article  CAS  Google Scholar 

  43. Mateo C, Abian O, Bernedo M et al (2005) Some special features of glyoxyl supports to immobilize proteins. Enzyme Microb Technol 37:456–462. https://doi.org/10.1016/j.enzmictec.2005.03.020

    Article  CAS  Google Scholar 

  44. Osuna Y, Sandoval J, Saade H et al (2015) Immobilization of Aspergillus niger lipase on chitosan-coated magnetic nanoparticles using two covalent-binding methods. Bioprocess Biosyst Eng 38:1437–1445. https://doi.org/10.1007/s00449-015-1385-8

    Article  CAS  PubMed  Google Scholar 

  45. Prlainović NŽ, Knežević-Jugović ZD, Mijin DŽ, Bezbradica DI (2011) Immobilization of lipase from Candida rugosa on Sepabeads®: the effect of lipase oxidation by periodates. Bioprocess Biosyst Eng 34:803–810. https://doi.org/10.1007/s00449-011-0530-2

    Article  CAS  PubMed  Google Scholar 

  46. Souza JES, Monteiro RRC, Rocha TG et al (2020) Sonohydrolysis using an enzymatic cocktail in the preparation of free fatty acid. 3 Biotech 10:254. https://doi.org/10.1007/s13205-020-02227-z

    Article  PubMed  Google Scholar 

  47. Moreira KS, Moura Júnior LS, Monteiro RRC et al (2020) Optimization of the production of enzymatic biodiesel from residual babassu oil (Orbignya sp.) via RSM. Catalysts 10:414. https://doi.org/10.3390/catal10040414

    Article  CAS  Google Scholar 

  48. Pomeisl K, Lamatová N, Šolínová V et al (2019) Enantioselective resolution of side-chain modified gem-difluorinated alcohols catalysed by Candida antarctica lipase B and monitored by capillary electrophoresis. Bioorg Med Chem 27:1246–1253. https://doi.org/10.1016/j.bmc.2019.02.022

    Article  CAS  PubMed  Google Scholar 

  49. Zhang K, Pan Z, Diao Z et al (2018) Kinetic resolution of sec -alcohols catalysed by Candida antarctica lipase B displaying Pichia pastoris whole-cell biocatalyst. Enzyme Microb Technol 110:8–13. https://doi.org/10.1016/j.enzmictec.2017.11.005

    Article  CAS  PubMed  Google Scholar 

  50. Bourkaib MC, Guiavarc’h Y, Chevalot I et al (2020) Non-covalent and covalent immobilization of Candida antarctica lipase B on chemically modified multiwalled carbon nanotubes for a green acylation process in supercritical CO2. Catal Today 348:26–36. https://doi.org/10.1016/j.cattod.2019.08.046

    Article  CAS  Google Scholar 

  51. Monteiro RRC, Neto DMA, Fechine PBA et al (2019) Ethyl butyrate synthesis catalyzed by lipases A and B from Candida antarctica immobilized onto magnetic nanoparticles. Improvement of biocatalysts’ performance under ultrasonic irradiation. Int J Mol Sci 20:5807. https://doi.org/10.3390/ijms20225807

    Article  CAS  PubMed Central  Google Scholar 

  52. Melo A, Silva F, dos Santos J et al (2017) Synthesis of benzyl acetate catalyzed by lipase immobilized in nontoxic chitosan-polyphosphate beads. Molecules 22:2165. https://doi.org/10.3390/molecules22122165

    Article  CAS  PubMed Central  Google Scholar 

  53. Nicoletti G, Cipolatti EP, Valério A et al (2015) Evaluation of different methods for immobilization of Candida antarctica lipase B (CalB lipase) in polyurethane foam and its application in the production of geranyl propionate. Bioprocess Biosyst Eng 38:1739–1748. https://doi.org/10.1007/s00449-015-1415-6

    Article  CAS  PubMed  Google Scholar 

  54. de Meneses AC, Lerin LA, Araújo PHH et al (2019) Benzyl propionate synthesis by fed-batch esterification using commercial immobilized and lyophilized Cal B lipase. Bioprocess Biosyst Eng 42:1625–1634. https://doi.org/10.1007/s00449-019-02159-w

    Article  CAS  PubMed  Google Scholar 

  55. Kirk O, Christensen MW (2002) Lipases from Candida antarctica: unique biocatalysts from a unique origin. Org Process Res Dev 6:446–451. https://doi.org/10.1021/op0200165

    Article  CAS  Google Scholar 

  56. Manoel EA, dos Santos JCS, Freire DMG et al (2015) Immobilization of lipases on hydrophobic supports involves the open form of the enzyme. Enzyme Microb Technol 71:53–57. https://doi.org/10.1016/j.enzmictec.2015.02.001

    Article  CAS  PubMed  Google Scholar 

  57. Verger R (1997) “Interfacial activation” of lipases: facts and artifacts. Trends Biotechnol 15:32–38. https://doi.org/10.1016/S0167-7799(96)10064-0

    Article  CAS  Google Scholar 

  58. Schmid RD, Verger R (1998) the open form. As with all lipases whose lipases: interfacial enzymes with attractive applications. Analysis 37:1608–1633. https://doi.org/10.1002/(SICI)1521-3757(19980619)110:12%3c1694:AID-ANGE1694%3e3.0.CO;2-3

    Article  Google Scholar 

  59. de Sousa Thiago, da Fonseca MR, da Conceição Ferreira M, de Oliveira TLG, de Araújo Marques R (2015) Chemoenzymatic synthesis of rasagiline mesylate using lipases. Appl Catal A Gen 492:76–82. https://doi.org/10.1016/j.apcata.2014.12.015

    Article  CAS  Google Scholar 

  60. Bhatnagar T, Boutaiba S, Hacene H et al (2005) Lipolytic activity from Halobacteria: screening and hydrolase production. FEMS Microbiol Lett 248:133–140. https://doi.org/10.1016/j.femsle.2005.05.044

    Article  CAS  PubMed  Google Scholar 

  61. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  Google Scholar 

  62. da Correia JA, Júnior JEM, Gonçalves LRB, Rocha MVP (2013) Alkaline hydrogen peroxide pretreatment of cashew apple bagasse for ethanol production: study of parameters. Bioresour Technol 139:249–256. https://doi.org/10.1016/j.biortech.2013.03.153

    Article  CAS  PubMed  Google Scholar 

  63. Guisán JM (1988) Aldehyde-agarose gels as activated supports for immobilization-stabilization of enzymes. Enzyme Microb Technol 10:375–382. https://doi.org/10.1016/0141-0229(88)90018-X

    Article  Google Scholar 

  64. Fernandez-Lafuente R, Rosell CM, Rodriguez V et al (1993) Preparation of activated supports containing low pK amino groups. A new tool for protein immobilization via the carboxyl coupling method. Enzyme Microb Technol 15:546–550. https://doi.org/10.1016/0141-0229(93)90016-U

    Article  CAS  PubMed  Google Scholar 

  65. Blanco RM, Guisán JM (1989) Stabilization of enzymes by multipoint covalent attachment to agarose-aldehyde gels. Borohydride reduction of trypsin-agarose derivatives. Enzyme Microb Technol 11:360–366. https://doi.org/10.1016/0141-0229(89)90020-3

    Article  CAS  Google Scholar 

  66. Sadana A, Henley JP (1987) Analysis of enzyme deactivations by a series-type mechanism: influence of modification on the activity and stability of enzymes. Ann N Y Acad Sci 501:73–79. https://doi.org/10.1111/j.1749-6632.1987.tb45687.x

    Article  CAS  PubMed  Google Scholar 

  67. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. https://doi.org/10.1038/227680a0

    Article  CAS  PubMed  Google Scholar 

  68. Peirce S, Tacias-Pascacio V, Russo M et al (2016) Stabilization of Candida antarctica lipase B (CALB) immobilized on octyl agarose by treatment with polyethyleneimine (PEI). Molecules 21:751. https://doi.org/10.3390/molecules21060751

    Article  CAS  PubMed Central  Google Scholar 

  69. dos Santos JCS, Bonazza HL, de Matos LJBL et al (2017) Immobilization of CALB on activated chitosan: application to enzymatic synthesis in supercritical and near-critical carbon dioxide. Biotechnol Rep 14:16–26. https://doi.org/10.1016/j.btre.2017.02.003

    Article  Google Scholar 

  70. Boudrant J, Woodley JM, Fernandez-Lafuente R (2020) Parameters necessary to define an immobilized enzyme preparation. Process Biochem 90:66–80. https://doi.org/10.1016/j.procbio.2019.11.026

    Article  CAS  Google Scholar 

  71. Fernandez-Lorente Gloria, Palomo Jose M, Cabrera Zaida, Roberto Fernandez-Lafuente JMG (2006) Improved catalytic properties of immobilized lipases by the presence of very low concentrations of detergents in the reaction medium. J Anat 97:242–250. https://doi.org/10.1002/bit

    Article  Google Scholar 

  72. Perna RF, Tiosso PC, Sgobi LM et al (2017) Effects of Triton X-100 and PEG on the catalytic properties and thermal stability of lipase from free and immobilized on glyoxyl-agarose. Open Biochem J 11:66–76. https://doi.org/10.2174/1874091X01711010066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sheldon RA, Schoevaart R, van Langen LM (2006) Cross-linked enzyme aggregates. In: Guisan JM (eds) Immobilization of enzymes and cells. Methods in biotechnology™, vol 22. Humana Press. https://doi.org/10.1007/978-1-59745-053-9_3

  74. de Oliveira UMF, Lima de Matos LJB, de Souza MCM et al (2018) Effect of the presence of surfactants and immobilization conditions on catalysts’ properties of Rhizomucor miehei lipase onto chitosan. Appl Biochem Biotechnol 184:1263–1285. https://doi.org/10.1007/s12010-017-2622-1

    Article  CAS  PubMed  Google Scholar 

  75. Zaak H, Siar E-H, Kornecki JF et al (2017) Effect of immobilization rate and enzyme crowding on enzyme stability under different conditions. The case of lipase from Thermomyces lanuginosus immobilized on octyl agarose beads. Process Biochem 56:117–123. https://doi.org/10.1016/j.procbio.2017.02.024

    Article  CAS  Google Scholar 

  76. Bolivar JM, Hidalgo A, Sánchez-Ruiloba L et al (2011) Modulation of the distribution of small proteins within porous matrixes by smart-control of the immobilization rate. J Biotechnol 155:412–420. https://doi.org/10.1016/j.jbiotec.2011.07.039

    Article  CAS  PubMed  Google Scholar 

  77. Romero O, Vergara J, Fernández-Lafuente R et al (2009) Simple strategy of reactivation of a partially inactivated penicillin g acylase biocatalyst in organic solvent and its impact on the synthesis of β-lactam antibiotics. Biotechnol Bioeng 103:472–479. https://doi.org/10.1002/bit.22264

    Article  CAS  PubMed  Google Scholar 

  78. Zdarta J, Meyer A, Jesionowski T, Pinelo M (2018) A general overview of support materials for enzyme immobilization: characteristics, properties, practical utility. Catalysts 8:92. https://doi.org/10.3390/catal8020092

    Article  CAS  Google Scholar 

  79. Schmid A, Dordick JS, Hauer B et al (2001) Industrial biocatalysis today and tomorrow. Nature 409:258–268. https://doi.org/10.1038/35051736

    Article  CAS  PubMed  Google Scholar 

  80. Bilal M, Asgher M, Cheng H et al (2019) Multi-point enzyme immobilization, surface chemistry, and novel platforms: a paradigm shift in biocatalyst design. Crit Rev Biotechnol 39:202–219. https://doi.org/10.1080/07388551.2018.1531822

    Article  CAS  PubMed  Google Scholar 

  81. Bezerra RM, Monteiro RRC, Neto DMA et al (2020) A new heterofunctional support for enzyme immobilization: PEI functionalized Fe3O4 MNPs activated with divinyl sulfone. Application in the immobilization of lipase from Thermomyces lanuginosus. Enzyme Microb Technol 138:109560. https://doi.org/10.1016/j.enzmictec.2020.109560

    Article  CAS  PubMed  Google Scholar 

  82. Luzia C, Reis B, Yvay E et al (2019) Design of immobilized enzyme biocatalysts: drawbacks and opportunities. Quim Nova 42:768–783. https://doi.org/10.21577/0100-4042.20170381

    Article  CAS  Google Scholar 

  83. Moreira KS, de Oliveira ALB, Júnior LS et al (2020) Lipase from Rhizomucor miehei immobilized on magnetic nanoparticles: performance in biodiesel optimized production by the Taguchi method. Front Bioeng Biotechnol 8:693. https://doi.org/10.3389/FBIOE.2020.00693

    Article  PubMed  PubMed Central  Google Scholar 

  84. Schoemaker HE (2003) Dispelling the myths–biocatalysis in industrial synthesis. Science 299:1694–1697. https://doi.org/10.1126/science.1079237

    Article  CAS  PubMed  Google Scholar 

  85. Brady D, Jordaan J (2009) Advances in enzyme immobilisation. Biotechnol Lett 31:1639–1650. https://doi.org/10.1007/s10529-009-0076-4

    Article  CAS  PubMed  Google Scholar 

  86. de Oliveira UMF, Lima de Matos LJB, de Souza MCM et al (2019) Efficient biotechnological synthesis of flavor esters using a low-cost biocatalyst with immobilized Rhizomucor miehei lipase. Mol Biol Rep 46:597–608. https://doi.org/10.1007/s11033-018-4514-z

    Article  CAS  PubMed  Google Scholar 

  87. Wang W, Roberts CJ (2010) Aggregation of therapeutic proteins. Wiley, Hoboken, p 484. https://www.wiley.com/en-br/Aggregation+of+Therapeutic+Proteins-p-9780470411964

  88. Kazlauskas RJ, Weissfloch ANE, Rappaport AT, Cuccia LA (1991) A rule to predict which enantiomer of a secondary alcohol reacts faster in reactions catalyzed by cholesterol esterase, lipase from Pseudomonas cepacia, and lipase from Candida rugosa. J Org Chem 56:2656–2665. https://doi.org/10.1021/jo00008a016

    Article  CAS  Google Scholar 

  89. Lee SH, Kim IS, Li QR et al (2011) Stereoselective amination of chiral benzylic ethers using chlorosulfonyl isocyanate: total synthesis of (+)-Sertraline. J Org Chem 76:10011–10019. https://doi.org/10.1021/jo201794k

    Article  CAS  PubMed  Google Scholar 

  90. Kim MJ, Hyun MK, Kim D et al (2004) Dynamic kinetic resolution of secondary alcohols by enzyme-metal combinations in ionic liquid. Green Chem 6:471–474. https://doi.org/10.1039/b405651e

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support of Brazilian Agencies for Scientific and Technological Development, Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico (FUNCAP), project number BP3-0139-00005.01.00/18, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), project number 422942/2016-2 and 311062/2019-9, Coordenação de Aperfeiçoamento de Ensino Superior (CAPES)—Finance Code 001. M. C. de Mattos thanks CNPq for research sponsorships (Process: 306043/2018-1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to José C. S. dos Santos or Luciana R. B. Gonçalves.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Souza, T.C., de Sousa Fonseca, T., de Sousa Silva, J. et al. Modulation of lipase B from Candida antarctica properties via covalent immobilization on eco-friendly support for enzymatic kinetic resolution of rac-indanyl acetate. Bioprocess Biosyst Eng 43, 2253–2268 (2020). https://doi.org/10.1007/s00449-020-02411-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-020-02411-8

Keywords

Navigation