Skip to main content
Log in

Pros and Cons in Various Immobilization Techniques and Carriers for Enzymes

  • Review Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In recent years, enzyme immobilization technology has been developed, and studies on immobilized enzyme materials have become very prominent. With the immobilization technique, enzymes and compatible carrier materials are combined or enzyme crystals/aggregates are used in a carrier-free fashion, by physical, chemical, or biochemical methods. As a kind of biocatalyst, immobilized enzymes can catalyze certain chemical reactions with high selectivity and high efficiency under relatively mild reaction conditions and eliminate pollution to the environment. Considering the current status and applications of immobilized enzyme technology and materials emerging in the last 5 years, this mini-review introduces the advantages and disadvantages of various enzyme immobilization techniques with carriers as well as the pros and cons of different materials for immobilization. The future prospects of immobilization technology and carrier materials are outlined, aiming to provide a reference for further research and applications of sustainable technology.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Copyright 2021 American Chemical Society

Fig. 4

Reproduced with permission from ref. [95]. Copyright by Spring Nature Publishing Group

Fig. 5

Reproduced with permission from ref. [100]. Creative Commons CC BY license

Similar content being viewed by others

Data Availability

Not applicable. This is a review which does not contain research data.

References

  1. Tosa, T., Mori, T., Fuse, N., & Chibata, F. (1969). Studies on continuous enzyme reactions, Part V. Kinetics and industrial applications of aminoacyl column for continuous optical resolution of acyl amino-acids. Agricultural and Biological Chemistry, 33, 1047–1052.

    CAS  Google Scholar 

  2. Tosa, T., Mori, T., Fuse, N., & Chibata, I. (1969). Studies on continuous enzyme reactions: part VI. Enzymatic properties of the DEAE-sephadex-aminoacylase complex. Agricultural and Biological Chemistry, 33, 1053–1059.

    Article  CAS  Google Scholar 

  3. Rodrigues, R. C., Ortiz, C., Berenguer-Murcia, Á., Torres, R., & Fernández-Lafuente, R. (2013). Modifying enzyme activity and selectivity by immobilization. Chemical Society Reviews, 42(15), 6290–6307.

    Article  CAS  PubMed  Google Scholar 

  4. Zhang, H., Bai, Y., Zhu, N., & Xu, J. (2021). Microfluidic reactor with immobilized enzyme - from construction to applications: a review. Chinese Journal of Chemical Engineering, 30, 136–145.

    Article  Google Scholar 

  5. Chen, K., Huang, X., Kan, S. B. J., Zhang, R. K., & Arnold, F. H. (2018). Enzymatic construction of highly strained carbocycles. Science, 360(6384), 71–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cui, J., Ren, S., Lin, T., Feng, Y., & Jia, S. (2018). Shielding effects of Fe3+-tannic acid nanocoatings for immobilized enzyme on magnetic Fe3O4@silica core shell nanosphere. Chemical Engineering Journal, 343, 629–637.

    Article  CAS  Google Scholar 

  7. Cui, J., Feng, Y., Lin, T., Tan, Z., Zhong, C., & Jia, S. (2017). Mesoporous metal–organic framework with well-defined cruciate flower-like morphology for enzyme immobilization. ACS Applied Materials & Interfaces, 9, 10587–10594.

    Article  CAS  Google Scholar 

  8. Nestl, B. M., Hammer, S. C., Nebel, B. A., & Hauer, B. (2014). New generation of biocatalysts for organic synthesis. Angewandte Chemie International Edition, 53(12), 3070–3095.

    Article  CAS  PubMed  Google Scholar 

  9. Huo, M., Wang, L., Chen, Y., & Shi, J. (2017). Tumor-selective catalytic nanomedicine by nanocatalyst delivery. Nature Communications, 8, 357.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zhou, J., Wu, Y., Zhang, Q., Xu, G., & Ni, Y. (2021). Co-immobilized alcohol dehydrogenase and glucose dehydrogenase with resin extraction for continuous production of chiral diaryl alcohol. Applied Biochemistry and Biotechnology, 193, 2742–2758.

    Article  CAS  PubMed  Google Scholar 

  11. Huo, M., Wang, L., Chen, Y., & Shi, J. (2020). Glucose-responsive cascaded nanocatalytic reactor with self-modulation of the tumor microenvironment for enhanced chemo-catalytic therapy. Materials Horizon, 7, 1834–1844.

    Article  Google Scholar 

  12. Fu, C., Lu, T., Dai, X., Ding, P., Xiong, Y., Ge, J., & Li, X. (2023). Co-immobilization of enzymes and metals on the covalent-organic framework for the efficient removal of mycotoxins. ACS Applied Materials & Interfaces, 15, 6859–6867.

    Article  CAS  Google Scholar 

  13. Braham, S. A., Morellon-Sterling, R., de Andrades, D., Rodrigues, R. C., Siar, E.-H., Aksas, A., Pedroche, J., Millán, M. C., & Fernandez-Lafuente, R. (2021). Effect of tris buffer in the intensity of the multipoint covalent immobilization of enzymes in glyoxyl-agarose beads. Applied Biochemistry and Biotechnology, 193, 2843–2857.

    Article  CAS  PubMed  Google Scholar 

  14. Li, T., Qiu, H., Liu, N., Li, J., Bao, Y., & Tong, W. (2020). Construction of self-activated cascade metal-organic framework/enzyme hybrid nanoreactors as antibacterial agents. Colloids and Surfaces B: Biointerfaces, 191, 111001.

    Article  CAS  PubMed  Google Scholar 

  15. Sasaki, K., Furusawa, H., Nagamine, K., & Tokito, S. (2020). Constructive optimization of a multienzymatic film based on a cascade reaction for electrochemical biosensors. ACS Omega, 5(50), 32844–32851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sun, K., Ding, Z., Zhang, J., Chen, H., Qin, Y., Xu, S., Wu, C., Yu, J., & Chiu, D. T. (2021). Enhancing the long-term stability of a polymer dot glucose transducer by using an enzymatic cascade reaction system. Advanced Healthcare Materials, 10(4), 2001019.

    Article  CAS  Google Scholar 

  17. Wang, T., Lei, Q.-L., Wang, M., Deng, G., Yang, L., Liu, X., Li, C., Wang, Q., Liu, Z., Wang, J., Cui, Z., Utama, K. G., Ni, R., & Chen, X. (2020). Mechanical tolerance of cascade bioreactions via adaptive curvature engineering for epidermal bioelectronics. Advanced Materials, 32(22), 2000991.

    Article  CAS  Google Scholar 

  18. Bolivar, J. M., Woodley, J. M., & Fernandez-Lafuente, R. (2022). Is enzyme immobilization a mature discipline? Some critical considerations to capitalize on the benefits of immobilization. Chemical Society Reviews, 51, 6251–6290.

    Article  CAS  PubMed  Google Scholar 

  19. Maghraby, Y. R., El-Shabasy, R. M., Ibrahim, A. H., & Azzazy, H. M. E. (2023). Enzyme immobilization technologies and industrial applications. ACS Omega, 8, 5184–5196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wunschik, D. S., Lorenz, A., Ingenbosch, K. N., Gutmann, J. S., & Hoffmann-Jacobsen, K. (2022). Activation and stabilization of lipase B from Candida antarctica by immobilization on polymer brushes with optimized surface structure. Applied Biochemistry and Biotechnology, 194, 3384–3399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mohammadi, M., Shahedi, M., Ahrari, F., Mostafavi, M., Habibi, Z., & Yousefi, M. (2023). Isocyanide-based multi-component reactions for carrier-free and carrier-bound covalent immobilization of enzymes. Nature Protocols, 18, 1641–1657.

    Article  CAS  PubMed  Google Scholar 

  22. López-Gallego, F., Fernandez-Lorente, G., Rocha-Martín, J., Bolivar, J. M., Mateo, C., & Guisan, J. M. (2020). Multi-point covalent immobilization of enzymes on glyoxyl agarose with minimal physicochemical modification: stabilization of industrial enzymes. Methods in Molecular Biology, 2100, 93–107.

    Article  PubMed  Google Scholar 

  23. Kermasha, S., & Gill, J. K. (2021) Chapter 6 - Immobilization of enzymes and their use in biotechnological applications. in ENZYMES, Novel Biotechnological Approaches for the Food Industry. S. Kermasha and M. N. A. Eskin. Academic Press, pp. 133–170.

  24. Yuan, Y., Shen, J., & Salmon, S. (2023). Developing enzyme immobilization with fibrous membranes: longevity and characterization considerations. Membranes, 13(5), 532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fu, J., Reinhold, J., & Woodbury, N. W. (2011). Peptide-modified surfaces for enzyme immobilization. PLoS One, 6(4), e18692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mateo, C., Palomo, J. M., Fuentes, M., Betancor, L., Grazu, V., López-Gallego, F., Pessela, B. C. C., Hidalgo, A., Fernández-Lorente, G., Fernández-Lafuente, R., & Guisán, J. M. (2006). Glyoxyl agarose: A fully inert and hydrophilic support for immobilization and high stabilization of proteins. Enzyme and Microbial Technology, 39(2), 274–280.

    Article  CAS  Google Scholar 

  27. Lee, D., Park, C., Yeo, J., & Kim, S. (2006). Lipase immobilization on silica gel using a cross-linking method. Journal of Industrial and Engineering Chemistry, 12(5), 777–782.

    CAS  Google Scholar 

  28. Imam, H. T., Marr, P. C., & Mar, A. C. (2021). Enzyme entrapment, biocatalyst immobilization without covalent attachment. Green Chemistry, 23, 4980–5005.

    Article  CAS  Google Scholar 

  29. de Andrade Silva, T., Keijok, W. J., Guimarães, M. C. C., Cassini, S. T. A., & de Oliveira, J. P. (2022). Impact of immobilization strategies on the activity and recyclability of lipases in nanomagnetic supports. Scientific Reports, 12(1), 6815.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Shivudu, G., Chandraraj, K., & Selvam, P. (2020). Production of xylooligosaccharides from xylan catalyzed by endo-1,4-β-D-xylanase-immobilized nanoscale carbon, silica and zirconia matrices. Molecular Catalysis, 484, 110745.

    Article  CAS  Google Scholar 

  31. Chen, N., Zhang, C., Liu, Y., Dong, X., & Sun, Y. (2019). Cysteine-modified poly (glycidyl methacrylate) grafted onto silica nanoparticles: new supports for significantly enhanced performance of immobilized lipase. Biochemical Engineering Journal, 145, 137–144.

    Article  CAS  Google Scholar 

  32. Pietricola, G., Ottone, C., Fino, D., & Tommasi, T. (2020). Enzymatic reduction of CO2 to formic acid using FDH immobilized on natural zeolite. Journal of CO2 Utilization, 42, 101343.

    Article  CAS  Google Scholar 

  33. Zou, B., Chu, Y., Xia, J., Chen, X., & Huo, S. (2018). Immobilization of lipase by ionic liquid-modified mesoporous SiO2 adsorption and calcium alginate-embedding method. Applied Biochemistry and Biotechnology, 2018(185), 606–618.

    Article  Google Scholar 

  34. Imam, H. T., Hill, K., Reid, A., Mix, S., Marr, P. C., & Marr, A. C. (2023). Supramolecular ionic liquid gels for enzyme entrapment. ACS Sustainable Chemistry & Engineering, 11(18), 6829–6837.

    Article  CAS  Google Scholar 

  35. Chen, B., Wang, X., Gao, X., Jiang, J., Hu, M., Li, S., & Jiang, Y. (2021). DNA directed immobilization of horseradish peroxidase on phase-transitioned lysozyme modified TiO2 for efficient degradation of phenol in wastewater. Materials & Design, 201, 109463.

    Article  CAS  Google Scholar 

  36. Chen, J., Sun, B., Sun, C., Zhang, P., Xu, W., Liu, Y., & Tang, K. (2020). Immobilization of lipase AYS on UiO-66-NH2 metal-organic framework nanoparticles as a recyclable biocatalyst for ester hydrolysis and kinetic resolution. Separation and Purification Technology, 251, 117398.

    Article  CAS  Google Scholar 

  37. Chauhan, V., Kaushal, D., Dhiman, V. K., Kanwar, S. S., Singh, D., Dhiman, V. K., & Pandey, H. (2022). An insight in developing carrier-free immobilized enzymes. Frontiers in Bioengineering and Biotechnology, 10, 794411.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Chen, N., Chang, B., Shi, N., Yan, W., Lu, F., & Liu, F. (2023). Cross-linked enzyme aggregates immobilization: preparation, characterization, and applications. Critical Reviews in Biotechnology, 43(3), 369–383.

    Article  CAS  PubMed  Google Scholar 

  39. Öndeş, B., Uygun, M., Evli, S., & Uygun, D. A. (2022). Immobilization of urokinase onto magnetically directed micromotors. Applied Biochemistry and Biotechnology, 194, 3351–3364.

    Article  PubMed  Google Scholar 

  40. Smeets, V., Baaziz, W., Ersen, O., Gaigneaux, E. M., Boissière, C., Sanchez, C., & Debecker, D. P. (2019). Hollow zeolite microspheres as a nest for enzymes: a new route to hybrid heterogeneous catalysts. Chemical Science, 11, 954–961.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Van der Verren, M., Smeets, V., Straeten, A. V., Dupont-Gillain, C., & Debecker, D. P. (2021). Hybrid chemoenzymatic heterogeneous catalyst prepared in one step from zeolite nanocrystals and enzyme-polyelectrolyte complexes. Nanoscale Advances, 3(6), 1646–1655.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Doğan, D., Sezer, S., Ulu, A., Köytepe, S., & Ateş, B. (2021). Preparation and characterization of amino-functionalized zeolite/SiO2 materials for trypsin–chymotrypsin co-immobilization. Catalysis Letters, 151, 2463–2477.

    Article  Google Scholar 

  43. Qayoudi, A. A., & Al-Zuhair, S. (2022). Dynamic modelling of enzymatic hydrolysis of oil using lipase immobilized on zeolite. Sustainability, 14(14), 8399.

    Article  Google Scholar 

  44. Lee, S. Y., Show, P. L., Ko, C.-M., & Chang, Y.-K. (2019). A simple method for cell disruption by immobilization of lysozyme on the extrudate-shaped Na-Y zeolite: recirculating packed bed disruption process. Biochemical Engineering Journal, 141, 210–216.

    Article  CAS  Google Scholar 

  45. Kujawa, J., Głodek, M., Koter, I., Li, G., Knozowska, K., & Kujawski, W. (2022). Bioconjugation strategy for ceramic membranes decorated with Candida antarctica lipase B—impact of immobilization process on material features. Materials, 15(2), 671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mulinari, J., Oliveira, J. V., & Hotza, D. (2020). Lipase immobilization on ceramic supports: an overview on techniques and materials. Biotechnology Advances, 42, 107581.

    Article  CAS  PubMed  Google Scholar 

  47. Valotta, A., Maier, M. C., Soritz, S., Pauritsch, M., Koenig, M., Brouczek, D., Schwentenwein, M., & Gruber-Woelfler, H. (2021). 3D printed ceramics as solid supports for enzyme immobilization: an automated DoE approach for applications in continuous flow. Journal of Flow Chemistry, 11(3), 675–689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Vakili, F., Mojtabavi, S., Imanparast, S., Kianmehr, Z., Forootanfar, H., & Faramarzi, M. A. (2020). Immobilization of lipase on the modified magnetic diatomite earth for effective methyl esterification of isoamyl alcohol to synthesize banana flavor. 3 Biotech, 10, 447.

    Article  PubMed  PubMed Central  Google Scholar 

  49. M. P. Cabrera, T. França da Fonseca, R. V. B. de Souza, C. R. D. de Assis, J. Q. Marcatoma, J. da C. Maciel, D. F. M. Neri, F. Soria, & L. B. de Carvalho Jr. (2018). Polyaniline-coated magnetic diatomite nanoparticles as a matrix for immobilizing enzymes. Applied Surface Science 457, 21-29.

  50. Guo, J., Liu, X., Zhang, X., Wu, J., Chai, C., Ma, D., Chen, Q., Xiang, D., & Ge, W. (2019). Immobilized lignin peroxidase on Fe3O4@SiO2@polydopamine nanoparticles for degradation of organic pollutants. International Journal of Biological Macromolecules, 138, 433–440.

    Article  CAS  PubMed  Google Scholar 

  51. Li, L., Zhang, W., Wei, Y., Yu, L., & Feng, D. (2022). A sensitive fluorescent immunoassay for prostate specific antigen detection based on signal amplify strategy of horseradish peroxidase and silicon dioxide nanospheres. Journal of Analytical Methods in Chemistry, 2022, 6209731.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Shen, Y., Zhang, Y., Zhang, X., Zhou, X., Teng, X., Yan, M., & Bi, H. (2015). Horseradish peroxidase-immobilized magnetic mesoporous silica nanoparticles as a potential candidate to eliminate intracellular reactive oxygen species. Nanoscale, 7(7), 2941–2950.

    Article  CAS  PubMed  Google Scholar 

  53. Luo, Y., Jin, D., He, W., Huang, J., Chen, A., & Qi, F. (2021). A SiO2 microcarrier with an opal-like structure for cross-linked enzyme immobilization. Langmuir, 37, 14147–14156.

    Article  CAS  PubMed  Google Scholar 

  54. Ahmed, S. A., Mostafa, F. A., & Ouis, M. A. (2018). Enhancement stability and catalytic activity of immobilized α-amylase using bioactive phospho-silicate glass as a novel inorganic support. International Journal of Biological Macromolecules, 112, 371–382.

    Article  CAS  PubMed  Google Scholar 

  55. Hosseini, S. S., Khodaiyan, F., Mousavi, E. S. M., Azimi, S. Z., & Gharaghani, M. (2020). Immobilization of pectinase on the glass bead using polyaldehyde kefiran as a new safe cross-linker and its effect on the activity and kinetic parameters. Food Chemistry, 309, 125777.

    Article  CAS  PubMed  Google Scholar 

  56. Wang, D., Hartz, W. F., & Moloney, M. G. (2023). Surface modified materials for active capture of enzymes. Journal of Materials Chemistry B, 11, 2377–2388.

    Article  CAS  PubMed  Google Scholar 

  57. Pounsamy, M., Somasundaram, S., Palanivel, S., Balasubramani, R., Chang, S. W., Nguyen, D. D., & Ganesan, S. (2019). A novel protease-immobilized carbon catalyst for the effective fragmentation of proteins in high-TDS wastewater generated in tanneries: Spectral and electrochemical studies. Environmental Research, 172, 408–419.

    Article  CAS  PubMed  Google Scholar 

  58. Santos, M. P. F., Porfírio, M. C. P., Junior, E. C. S., Bonomo, R. C. F., & Veloso, C. M. (2022). Pepsin immobilization: influence of carbon support functionalization. International Journal of Biological Macromolecules, 203, 67–79.

    Article  CAS  PubMed  Google Scholar 

  59. Lee, A. A., Gervasio, E. D., Hughes, R. O., Maalouf, A. A., Musso, S. A., Crisalli, A. M., & Woolridge, E. M. (2023). Alginate encapsulation stabilizes xylanase toward the laccase mediator system. Applied Biochemistry and Biotechnology, 195, 3311–3326.

    Article  CAS  PubMed  Google Scholar 

  60. Maity, M., Bhattacharyya, A., & Bhowal, J. (2021). Production and immobilization of β-galactosidase isolated from Enterobacter aerogenes KCTC2190 by entrapment method using agar-agar organic matrix. Applied Biochemistry and Biotechnology, 193, 2198–2224.

    Article  CAS  PubMed  Google Scholar 

  61. Zhou, Y., Dong, J., & Wang, Q. (2023). Fabricating higher-order functional DNA origami structures to reveal biological processes at multiple Scales. NPG Asia Materials, 15, 25.

    Article  CAS  Google Scholar 

  62. Zhan, P., Peil, A., Jiang, Q., Wang, D., Mousavi, S., Xiong, Q., Shen, Q., Shang, Y., Ding, B., Lin, C., Ke, Y., & Liu, N. (2023). Recent Advances in DNA origami-engineered nanomaterials and applications. Chemical Reviews, 123(7), 3976–4050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kahn, J. S., Xiong, Y., Huang, J., & Gang, O. (2022). Cascaded enzyme reactions over a three-dimensional, wireframe DNA origami scaffold. JACS Au, 2, 357–366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lin, P., Dinh, H., Morita, Y., Zhang, Z., Nakata, E., Kinoshita, M., & Morii, T. (2021). Evaluation of the role of the DNA surface for enhancing the activity of scaffolded enzymes. Chemical Communications, 57(32), 3925–3928.

    Article  CAS  PubMed  Google Scholar 

  65. Dwamena, A. K., Woo, S. H., & Kim, C. S. (2020). Enzyme immobilization on porous chitosan hydrogel capsules formed by anionic surfactant gelation. Biotechnology Letters, 42(5), 845–852.

    Article  CAS  PubMed  Google Scholar 

  66. Costa, G. P., Spolidoro, L. S., Manfroi, V., Rodrigues, R. C., & Hertz, P. F. (2022). α-Acetolactate decarboxylase immobilized in chitosan: A highly stable biocatalyst to prevent off-flavor in beer. Biotechnology Progress, 38(6), e3295.

    Article  CAS  PubMed  Google Scholar 

  67. Gür, S. D., İdil, N., & Aksöz, N. (2018). Optimization of enzyme co-immobilization with sodium alginate and glutaraldehyde-activated chitosan beads. Applied Biochemistry and Biotechnology, 184(2), 538–552.

    Article  PubMed  Google Scholar 

  68. Zhang, H., Nie, M., Gu, Z., Xin, Y., Zhang, L., Li, Y., & Shi, G. (2023). Preparation of water-insoluble lignin nanoparticles by deep eutectic solvent and its application as a versatile and biocompatible support for the immobilization of α-amylase. International Journal of Biological Macromolecules, 249, 125975.

    Article  CAS  PubMed  Google Scholar 

  69. Verma, N. K., & Raghav, N. (2022). Cellulose tosylate as support for α-amylase immobilization. International Journal of Biological Macromolecules, 222, 413–420.

    Article  CAS  PubMed  Google Scholar 

  70. Abdel Wahab, W. A., Karam, E. A., Hassan, M. E., Kansoh, A. L., Esawy, M. A., & Awad, G. E. A. (2018). Optimization of pectinase immobilization on grafted alginate-agar gel beads by 24 full factorial CCD and thermodynamic profiling for evaluating of operational covalent immobilization. International Journal of Biological Macromolecules, 113, 159–170.

    Article  CAS  PubMed  Google Scholar 

  71. Zhou, L., Liu, Y., Shi, H., Yang, X., Huang, J., Liu, S., & Wang, K. (2018). Flexible assembly of an enzyme cascade on a DNA triangle prism nanostructure for the controlled biomimetic generation of nitric oxide. ChemBioChem, 19(19), 2099–2106.

    Article  CAS  PubMed  Google Scholar 

  72. Wang, Z., St. Iago-Mcrae, E., Ebrahimimojarad, A., Won Oh, S., & Fu, J. (2022). Modulation of enzyme cascade activity by local substrate enrichment and exclusion on DNA nanostructures. Langmuir, 38(41),12594-12601.

  73. Mela, I., Vallejo-Ramirez, P. P., Makarchuk, S., Christie, G., Bailey, D., Henderson, R. M., & Kaminski, C. F. (2020). DNA nanostructures for targeted antimicrobial delivery. Angewandte Chemie International Edition, 132(31), 12798–12802.

    Article  Google Scholar 

  74. Lin, P., Dinh, H., & Morita, Y. (2023). Dynamic assembly of cascade enzymes by the shape transformation of a DNA scaffold. Advanced Functional Materials, 33(15), 2215023.

    Article  CAS  Google Scholar 

  75. Kumari, A., & Kayastha, A. M. (2011). Immobilization of soybean (glycine max) α-amylase onto chitosan and amberlite MB-150 beads: Optimization and characterization. Journal of Molecular Catalysis B: Enzymatic, 69(1–2), 8–14.

    Article  CAS  Google Scholar 

  76. Ashraf, H., & Husain, Q. (2010). Use of DEAE cellulose adsorbed and crosslinked white radish (Raphanus sativus) peroxidase for the removal of α-naphthol in batch and continuous process. International Biodeterioration & Biodegradation, 64(1), 27–31.

    Article  CAS  Google Scholar 

  77. Hakkoymaz, O., & Mazi, H. (2020). An immobilized invertase enzyme for the selective determination of sucrose in fruit juices. Analytical Biochemistry, 611, 114000.

    Article  CAS  PubMed  Google Scholar 

  78. Shen, J., Qiao, J., Zhang, X., & Qi, L. (2021). Dual-stimuli-responsive porous polymer enzyme reactor for tuning enzymolysis efficiency. Microchimica Acta, 188(12), 435.

    Article  CAS  PubMed  Google Scholar 

  79. Kübelbeck, S., Mikhael, J., Keller, H., Konradi, R., Andrieu-Brunsen, A., & Baier, G. (2018). Enzyme–polymer conjugates to enhance enzyme shelf life in a liquid detergent formulation. Macromolecular Bioscience, 18(7), 1800095.

    Article  Google Scholar 

  80. Rainer, T., Egger, A. S., Zeindl, R., Tollinger, M., Kwiatkowski, M., & Müller, T. (2022). 3D-printed high-pressure-resistant immobilized enzyme microreactor (ΜIMER) for protein analysis. Analytical Chemistry, 94(24), 8580–8587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Plekhanova, Y. V., Tikhonenko, S. A., Dubrovsky, A. V., Kim, A. L., Musin, E. V., Wang, G. J., & Reshetilov, A. N. (2019). Comparative study of electrochemical sensors based on enzyme immobilized into polyelectrolyte microcapsules and into chitosan gel. Analytical Sciences, 35(9), 1037–1043.

    Article  CAS  PubMed  Google Scholar 

  82. Liao, Y., Wang, X., Shen, H., Tai, Z., & Wang, Q. (2022). Dynamic assembly and biocatalysis-selected gelation endow self-compartmentalized multienzyme superactivity. Science China Chemistry, 65, 1985–1993.

    Article  CAS  Google Scholar 

  83. Pinyakit, Y., Romphophak, P., Painmanakul, P., & Hoven, V. P. (2023). Introduction of an ambient 3D-printable hydrogel ink to fabricate an enzyme-immobilized platform with tunable geometry for heterogeneous biocatalysis. Biomacromolecules, 24(7), 3138–3148.

    Article  CAS  PubMed  Google Scholar 

  84. Wang, D., Cui, F., Xi, L., Tan, X., Li, J., & Li, T. (2023). Preparation of a multifunctional non-stick tamarind polysaccharide-polyvinyl alcohol hydrogel immobilized with a quorum quenching enzyme for maintaining fish freshness. Carbohydrate Polymers, 302, 120382.

    Article  CAS  PubMed  Google Scholar 

  85. Bilal, M., Rasheed, T., Zhao, Y., & Iqbal, H. M. (2019). Agarose-chitosan hydrogel-immobilized horseradish peroxidase with sustainable bio-catalytic and dye degradation properties. International Journal of Biological Macromolecules, 124, 742–749.

    Article  CAS  PubMed  Google Scholar 

  86. Lin, H., Li, M., Ding, L., & Huang, J. (2019). A fiber optic biosensor based on hydrogel-immobilized enzyme complex for continuous determination of cholesterol and glucose. Applied Biochemistry and Biotechnology, 187, 1569–1580.

    Article  CAS  PubMed  Google Scholar 

  87. Qin, Z., Feng, N., Li, Y., Fei, X., Tian, J., Xu, L., & Wang, Y. (2022). Hydrogen-bonded lipase-hydrogel microspheres for esterification application. Journal of Colloid and Interface Science, 606, 1229–1238.

    Article  CAS  PubMed  Google Scholar 

  88. Zarei, A., Alihosseini, F., Parida, D., Nazir, R., & Gaan, S. (2021). Fabrication of cellulase catalysts immobilized on a nanoscale hybrid polyaniline/cationic hydrogel support for the highly efficient catalytic conversion of cellulose. ACS Applied Materials & Interfaces, 13(42), 49816–49827.

    Article  CAS  Google Scholar 

  89. Chen, Q., Wang, Y., & Luo, G. (2023). Recycling of cofactors in crude enzyme hydrogels as co-immobilized heterogeneous biocatalysts for continuous-flow asymmetric reduction of ketones. Chemsuschem, 16(3), e202201654.

    Article  CAS  PubMed  Google Scholar 

  90. Liang, W., Wied, P., Carraro, F., Sumby, C. J., Nidetzky, B., Tsung, C.-K., Falcaro, P., & Doonan, C. J. (2021). Metal-organic framework-based enzyme biocomposites. Chemical Reviews, 121(3), 1077–1129.

    Article  CAS  PubMed  Google Scholar 

  91. Hu, C., Bai, Y., Hou, M., Wang, Y., Wang, L., Cao, X., Chan, C.-W., Sun, H., Li, W., Ge, J., & Ren, K. (2020). Defect-induced activity enhancement of enzyme-encapsulated metal-organic frameworks revealed in microfluidic gradient mixing synthesis. Science Advances, 6, eaax5785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ren, S., Wang, F., Gao, H., Han, X., Zhang, T., Yuan, Y., & Zhou, Z. (2023). Recent progress and future prospects of laccase immobilization on MOF supports for industrial applications. Applied Biochemistry and Biotechnology. https://doi.org/10.1007/s12010-023-04607-6

    Article  PubMed  Google Scholar 

  93. Cheng, Q., Chi, X., Liang, Y., Li, W., Sun, J., Tao, J., & Wang, Z. (2023). Immobilization of lipase in Cu-BTC MOF with enhanced catalytic performance for resolution of N-hydroxymethyl vince lactam. Applied Biochemistry and Biotechnology, 195, 1216–1230.

    Article  CAS  PubMed  Google Scholar 

  94. He, W., Shen, H., Zhou, Z., Huang, Z., Chao, H., Song, J., Su, P., & Yang, Y. (2021). Janus DNA bridges metal-organic frameworks and graphene oxide for convenient and efficient multienzyme co-immobilization with boosted activity. Applied Surface Science, 570, 151242.

    Article  CAS  Google Scholar 

  95. Chen, W.-H., Vázquez-González, M., Zoabi, A., Abu-Reziq, R., & Willner, I. (2018). Biocatalytic cascades driven by enzymes encapsulated in metal–organic framework nanoparticles. Nature Catalysis, 1, 689–695.

    Article  CAS  Google Scholar 

  96. Zhou, X., Guo, S., Gao, J., Zhao, J., Xue, S., & Xu, W. (2017). Glucose oxidase-initiated cascade catalysis for sensitive impedimetric aptasensor based on metal-organic frameworks functionalized with Pt nanoparticles and hemin/G-quadruplex as mimicking peroxidases. Biosensors & Bioelectronics, 98, 83–90.

    Article  CAS  Google Scholar 

  97. Zhang, Y., Xu, L., & Ge, J. (2022). Multienzyme system in amorphous metal-organic frameworks for intracellular lactate detection. Nano Letters, 22, 5029–5036.

    Article  CAS  PubMed  Google Scholar 

  98. Kandambeth, S., Venkatesh, V., Shinde, D. B., Kumari, S., Halder, A., Verma, S., & Banerjee, R. (2015). Self-templated chemically stable hollow spherical covalent organic framework. Nature Communications, 6, 6786.

    Article  CAS  PubMed  Google Scholar 

  99. Wang, B., Lin, R.-B., Zhang, Z., Xiang, S., & Chen, B. (2020). Hydrogen-bonded organic frameworks as a tunable platform for functional materials. Journal of the American Chemical Society, 142(34), 14399–14416.

    Article  CAS  PubMed  Google Scholar 

  100. Chen, G., Tong, L., Huang, S., Huang, S., Zhu, F., & Ouyang, G. (2022). Hydrogen-bonded organic framework biomimetic entrapment allowing non-native biocatalytic activity in enzyme. Nature Communications, 13(1), 4816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Chen, J., Sun, B., Sun, C., Zhang, P., Xu, W., Liu, Y., Xiong, B., & Tang, K. (2020). Immobilization of lipase AYS on UiO-66-NH2 metal-organic framework nanoparticles as a recyclable biocatalyst for ester hydrolysis and kinetic resolution. Separation and Purification Technology, 251, 117398.

    Article  CAS  Google Scholar 

  102. Elmerhi, N., Al-Maqdi, K., Athamneh, K., Mohammed, A. K., Skorjanc, T., Gándara, F., Raya, J., Pascal, S., Siri, O., Trabolsi, A., Shah, I., Shetty, D., & Ashraf, S. S. (2023). Enzyme-immobilized hierarchically porous covalent organic framework biocomposite for catalytic degradation of broad-range emerging pollutants in water. Journal of Hazardous Materials, 459, 132261.

    Article  CAS  PubMed  Google Scholar 

  103. Li, M., Qiao, S., Zheng, Y., Andaloussi, Y. H., Li, X., Zhang, Z., Li, A., Cheng, P., Ma, S., & Chen, Y. (2020). Fabricating covalent organic framework capsules with commodious microenvironment for enzymes. Journal of the American Chemical Society, 142(14), 6675–6681.

    Article  CAS  PubMed  Google Scholar 

  104. Zheng, Y., Zhang, S., Guo, J., Shi, R., Yu, J., Li, K., Li, N., Zhang, Z., & Chen, Y. (2022). Green and scalable fabrication of high-performance biocatalysts using covalent organic frameworks as enzyme carriers. Angewandte Chemie International Edition, 61, e202208744.

    Article  CAS  PubMed  Google Scholar 

  105. Chen, G., Huang, S., Ma, X., He, R., & Ouyang, G. (2023). Encapsulating and stabilizing enzymes using hydrogen-bonded organic frameworks. Nature Protocols, 18(7), 2032–2050.

    Article  CAS  PubMed  Google Scholar 

  106. Zhang, Y., Xing, C., Mu, Z., Niu, Z., Feng, X., Zhang, Y., & Wang, B. (2023). Harnessing self-repairing and crystallization processes for effective enzyme encapsulation in covalent organic frameworks. Journal of the American Chemical Society, 145(24), 13469–13475.

    Article  CAS  PubMed  Google Scholar 

  107. Liu, S., & Sun, Y. (2023). Co-encapsulating cofactor and enzymes in hydrogen-bonded organic frameworks for multienzyme cascade reactions with cofactor recycling. Angewandte Chemie International Edition, 62, e202308562.

    Article  CAS  PubMed  Google Scholar 

  108. Liang, J., Ruan, J., Njegic, B., Rawal, A., Jason, S., Xu, J., Boyer, C., & Liang, K. (2023). Insight into bioactivity of in-situ trapped enzyme-covalent-organic frameworks. Angewandte Chemie International Edition, 62, e202303001.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant number 21973061) and Zhejiang Provincial Science and Technology Innovation Program for College Students (Grant number 2023R465014).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The first draft of the manuscript was written by YJ, JZ, MW, WX, and YW. YJ, JZ, and LW performed the literature search and revised and reviewed the manuscript. JD performed the literature search, data analysis, revised and reviewed the manuscript, and supervised the study. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jian Dong.

Ethics declarations

Ethics Approval

This is a review study which does not involve human or animal subjects and does not require ethics approval.

Consent to Participate

Not applicable.

Consent for Publication

This is a review study. The authors affirm that provided informed consent for publication.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Zheng, J., Wang, M. et al. Pros and Cons in Various Immobilization Techniques and Carriers for Enzymes. Appl Biochem Biotechnol (2024). https://doi.org/10.1007/s12010-023-04838-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12010-023-04838-7

Keywords

Navigation