Skip to main content
Log in

Integrated thermophilic enzyme-immobilized reactor and high-rate biological reactors for treatment of palm oil-containing wastewater without sludge production

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Bacillus pumilus, the thermophilic microorganism, was used to biosynthesise lipase of specific activity 5173 U. The purified lipase was highly stable in the pH range from 1 to 7 and temperature at 50 °C. The functionalized nanoporous activated carbon matrix was used for the immobilization of lipase at the optimum conditions and was used for the hydrolysis of palm oil-containing wastewater at optimum time, 3 h, pH 7, and at temperature 50 °C. The hydrolyzed palm oil wastewater was treated in an upflow anaerobic reactor for the removal of soluble COD at hydraulic retention time (HRT) of 3 days. The anaerobic-treated wastewater was applied to the fluidized immobilized carbon catalytic oxidation (FICCO) reactor at HRT of 16 h to reduce the soluble COD. The FICCO-treated wastewater was further treated in chemo-autotrophic activated carbon oxidation (CAACO) reactor to reduce the COD less than 100 mg/L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gombert AK, Pinto AL, Castilho LR, Freire DMG (1999) Lipase production by Penicillium restrictum in solid-state fermentation using babassu oil cake as substrate. Process Biochem 35:85–90

    Article  CAS  Google Scholar 

  2. Rupani PF, Singh RP, Ibrahim MH, Esa N (2010) Review of current palm oil mill effluent (POME) treatment methods: vermi-composting as a sustainable practice. World Appl Sci J 11:70–81

    CAS  Google Scholar 

  3. Olafadehan OA, Jinadu OW (2012) Treatment of brewery wastewater effluent using activated carbon prepared from coconut shell. Int J Appl Sci Technol 2:165

    Google Scholar 

  4. Inan H, Dimoglo A, Şimşek H, Karpuzcu M (2004) Olive oil mill wastewater treatment by means of electro-coagulation. Sep Purif Technol 36:23–31

    Article  CAS  Google Scholar 

  5. Moosai R, Dawe RA (2003) Gas attachment of oil droplets for gas flotation for oily wastewater cleanup. Sep Purif Technol 33:303–314

    Article  CAS  Google Scholar 

  6. Ahmad AL, Sumathi S, Hameed BH (2006) Coagulation of residue oil and suspended solid in palm oil mill effluent by chitosan, alum and PAC. Chem Eng J 118:99–105

    Article  CAS  Google Scholar 

  7. Fu Y, Chung DDL (2011) Coagulation of oil in water using sawdust, bentonite and calcium hydroxide to form floating sheets. Appl Clay Sci 53:634–641

    Article  CAS  Google Scholar 

  8. Li L, Ding L, Tu Z, Wan Y, Clausse D, Lanoisellé JL (2009) Recovery of linseed oil dispersed within an oil-in-water emulsion using hydrophilic membrane by rotating disk filtration system. J Mem Sci 342:70–79

    Article  CAS  Google Scholar 

  9. Srinivasan A, Viraraghavan T (2010) Oil removal from water using biomaterials. Bioresour Technol 101:6594–6600

    Article  CAS  PubMed  Google Scholar 

  10. Crine DG, Paloumet X, Bjornsson L, Alves MM, Mattiasson B (2007) Anaerobic digestion of lipid rich waste—effects of lipid concentration. Renew Energy 32:965–975

    Article  CAS  Google Scholar 

  11. Jaeger KE, Ransac S, Dijktra BW, Colson C, Heuvel MV, Misset O (1994) Bacterial lipases. FEMS Microbiol Rev 15:29–63

    Article  CAS  PubMed  Google Scholar 

  12. Mozhaev V (1993) Mechanism-based strategies for protein thermo stabilization. Trends Biotechnol 11:88–95

    Article  CAS  PubMed  Google Scholar 

  13. Adams M, Perler F, Kelly R (1995) Extremozymes: expanding the limits of biocatalysis. BioTechnol 13:662–668

    CAS  Google Scholar 

  14. Lam SY, Yeung RCY, Yu TH, Sze KH, Wong KB (2011) A rigidifying salt-bridge favors the activity of thermophilic enzyme at high temperatures at the expense of low-temperature activity. PLoSBiol 9:e1001027. https://doi.org/10.1371/journal.pbio.1001027

    Article  CAS  Google Scholar 

  15. Schmidt-Dannert C, Sztajer H, Stocklein W, Menge U, Schmid RD (1994) Screening, purification and properties of a thermophilic lipase from Bacillus thermocatenulatus. Biochem Biophys Acta 1214:43–53

    Article  CAS  PubMed  Google Scholar 

  16. Luisa RaM, Schmidt-Dannert C, Wahl S, Sprauer A, Schmid RD (1997) Thermoalkalophilic lipase of Bacillus thermocatenulatus Large-scale production, purification and properties: aggregation behaviour and its effect on activity. J Biotechnol 56:89–102

    Article  Google Scholar 

  17. Kim HK, Sung MH, Kim HM, Oh TK (1994) Occurrence of thermostable lipase in thermophilic Bacillus sp. strain 398. Biosci Biotech Biochem 58:961–962

    Article  CAS  Google Scholar 

  18. Fariha H, Aamer AS, Abdul H (2006) Industrial applications of microbial lipases. Enzyme Microbial Technol 39:235–251

    Article  CAS  Google Scholar 

  19. Ramani KS, Boopathy R, John Kennedy L, Mandal AB, Sekaran G (2012) Surface functionalized mesoporous activated carbon for the immobilization of acidic lipase and their application to hydrolysis of waste cooked oil: isotherm and kinetic studies. Process Biochem 47:435–445

    Article  CAS  Google Scholar 

  20. Batstone DJ, Keller J, Angelidaki I, Kalyuzhnyi SV, Pablostathis SG, Rozzi A, Sanders WTM, Siegrist H, Vavilin VA (2002) The IWA anaerobic digestion model no.1 (ADM1). Wat Sci Tech 45:65–73

    Article  CAS  Google Scholar 

  21. Ralf R, Matthias B, Johann H, Rainer UM, Wolfgang B et al (2016) Anaerobic Microbial Degradation of Hydrocarbons: From Enzymatic Reactions to the Environment. J Mol Microbiol Biotechnol 26:5–28

    Article  CAS  Google Scholar 

  22. Labinger JA, Bercaw JE (2002) Understanding and exploiting C–H bond activation. Nature 417:507–514

    Article  CAS  PubMed  Google Scholar 

  23. Joutey NT, Bahafid W, Sayel H, El Ghachtouli N (2013) Biodegradation: involved microorganisms and genetically engineered microorganisms. In: Chamy R, Rosenkranz F (eds) Biodegradation-Life of science. IntechOpen, Rijeka. https://doi.org/10.5772/56194

    Chapter  Google Scholar 

  24. Sinhal S, Chattopadhyay P, Pan I, Chatterjee S, Chandal P, Das K, Bandyopadhyay SD (2009) Microbial transformation of xenobiotics for environmental bioremediation. Afr J Biotech 8:6016

    Article  Google Scholar 

  25. John Kennedy L, Mohan das K, Sekaran G (2004) Integrated biological and catalytic oxidation of organics/inorganics in tannery wastewater by rice husk based mesoporous activated carbon-Bacillus sp. Carbon 42:2399–2407

    Article  CAS  Google Scholar 

  26. Saranya P, Sukanya Kumari H, Prasad Rao B, Sekaran G (2014) Lipase production from a novel thermo-tolerant and extreme acidophile Bacillus pumilus using palm oil as the substrate and treatment of palm oil-containing wastewater. Environ Sci Pollut Res 21:3907–3919

    Article  CAS  Google Scholar 

  27. Lowry OH, Rosebrough NJ, Farr AL, Randal J (1951) Protein measurement with the Folin-phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  28. Ramani K, John Kennedy L, Ramakrishnan M, Sekaran G (2010) Purification, characterization and application of acidic lipase from Pseudomonas gessardii using beef tallow as a substrate for fats and oil hydrolysis. Process Biochem 45:1683–1691

    Article  CAS  Google Scholar 

  29. Ho YS, Mckay G (1998) Kinetic models for the sorption of dye from aqueous solution by wood. Trans Chem E 76B:183–191

    Google Scholar 

  30. Lagergren S, Svenska BK (1898) The theory of adsorption on geloester substances. Veternskapsakad Handlingar 24:1–39

    Google Scholar 

  31. Sekaran G, Karthikeyan S, Boopathy R, Mandal AB (2014) A fluidized bed reactor for treatment of waste water. Patent No: WO 2014037959 A1 (Published, International)

  32. WEF (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association/American Water Works Association/Water Environment Federation, Washington, DC

    Google Scholar 

  33. Ramani K, Saranya P, Chandan jain S, Sekaran G (2013) Lipase from marine strain using cooked sunflower oil waste: production optimization and application for hydrolysis and thermodynamic studies. Bioprocess Biosys Eng 36:301–315

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Author Dr. P. Saranya is grateful to the Council of Scientific and Industrial Research (CSIR), India.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. Saranya or G. Sekaran.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 154 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saranya, P., Selvi, P.K. & Sekaran, G. Integrated thermophilic enzyme-immobilized reactor and high-rate biological reactors for treatment of palm oil-containing wastewater without sludge production. Bioprocess Biosyst Eng 42, 1053–1064 (2019). https://doi.org/10.1007/s00449-019-02104-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-019-02104-x

Keywords

Navigation