Skip to main content
Log in

Enhanced biocatalytic activity of immobilized Pseudomonas cepacia lipase under sonicated condition

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The present work reports the use of biocatalyst and ultrasound for greener synthesis of cinnamyl propionate. The lipase Pseudomonas cepacia was immobilized on a copolymer of hydroxypropyl methyl cellulose and polyvinyl alcohol. This biocatalyst was u sed for ultrasound-assisted synthesis of cinnamyl propionate with the detailed optimization of various reaction parameters. Besides this, protocol was extended to synthesize various industrially important propionate esters. In addition to this, different enzyme-kinetic parameters such as r max and K m(vinyl propionate), K m(cinnamyl alcohol) and K i(cinnamyl alcohol) were studied which presented ordered bi–bi mechanism with an inhibition by cinnamyl alcohol. The developed biocatalyst demonstrated enhancement in catalytic activity and recyclability up to five recycles. Moreover, the biocatalyst was tested to investigate the effects of sonication via various characterization techniques such as scanning electron microscopy, thermogravimetry, and water content analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Badgujar KC, Bhanage BM (2014) Solvent stability study with thermodynamic analysis and superior biocatalytic activity of burkholderia cepacia lipase immobilized on biocompatible hybrid matrix of poly(vinyl alcohol) and hypromellose. J Phys Chem B 118:14808–14819

    CAS  Google Scholar 

  2. Paludo N, Alves JS, Altmann C et al (2014) The combined use of ultrasound and molecular sieves improves the synthesis of ethyl butyrate catalyzed by immobilized Thermomyces lanuginosus lipase. Ultrason Sonochem 22:89–94

    Article  CAS  Google Scholar 

  3. Schmid A, Dordick JS, Hauer B et al (2001) Industrial biocatalysis today and tomorrow. Nature 409:258–268

    Article  CAS  Google Scholar 

  4. Wohlgemuth R (2010) Biocatalysis—key to sustainable industrial chemistry. Curr Opin Biotechnol 21:713–724

    Article  CAS  Google Scholar 

  5. Ansorge-Schumacher MB, Thum O (2013) Immobilised lipases in the cosmetics industry. Chem Soc Rev 42:6475–6490

    Article  CAS  Google Scholar 

  6. Dhake KP, Thakare DD, Bhanage BM (2013) Lipase: a potential biocatalyst for the synthesis of valuable flavour and fragrance ester compounds. Flavour Fragr J 28:71–83

    Article  CAS  Google Scholar 

  7. Hanefeld U, Magner E (2009) Understanding enzyme immobilisation. Chem Soc Rev 38:453–468

    Article  CAS  Google Scholar 

  8. Sheldon RA (2007) Enzyme Immobilization: the quest for optimum performance. Adv Synth Catal 349:1289–1307

    Article  CAS  Google Scholar 

  9. Mateo C, Palomo JM, Fernandez-lorente G et al (2007) Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb Technol 40:1451–1463

    Article  CAS  Google Scholar 

  10. Cao L (2005) Immobilized enzymes: science or art? Curr Opin Chem Biol 9:217–226

    Article  CAS  Google Scholar 

  11. Sheldon RA (2011) Characteristic features and biotechnological applications of cross-linked enzyme aggregates (CLEAs). Appl Microbiol Biotechnol 92:467–477

    Article  CAS  Google Scholar 

  12. Jochems P, Satyawali Y, Diels L et al (2011) Enzyme immobilization on/in polymeric membranes: status, challenges and perspectives in biocatalytic membrane reactors (BMRs). Green Chem 13:1609–1623

    Article  CAS  Google Scholar 

  13. Dalla-Vecchia R, Sebrão D, Nascimento MDG et al (2005) Carboxymethylcellulose and poly(vinyl alcohol) used as a film support for lipases immobilization. Process Biochem 40:2677–2684

    Article  CAS  Google Scholar 

  14. Orrego CE, Salgado N, Valencia JS et al (2010) Novel chitosan membranes as support for lipases immobilization: characterization aspects. Carbohydr Polym 79:9–16

    Article  CAS  Google Scholar 

  15. Kim MH, An S, Won K et al (2012) Entrapment of enzymes into cellulose-biopolymer composite hydrogel beads using biocompatible ionic liquid. J Mol Catal B Enzym 75:68–72

    Article  CAS  Google Scholar 

  16. Mendes AA, De Castro HF, Rodrigues D et al (2011) Multipoint covalent immobilization of lipase on chitosan hybrid hydrogels: influence of the polyelectrolyte complex type and chemical modification on the catalytic properties of the biocatalysts. J Ind Microbiol Biotechnol 38:1055–1066

    Article  CAS  Google Scholar 

  17. Badgujar KC, Bhanage BM (2015) The combine use of ultrasound and lipase immobilized on co-polymer matrix for efficient biocatalytic application studies. J Mol Catal B Enzym 122:255–264

    Article  CAS  Google Scholar 

  18. Liese A, Hilterhaus L (2013) Evaluation of immobilized enzymes for industrial application. Chem Soc Rev 42:6236–6249

    Article  CAS  Google Scholar 

  19. Veljković VB, Avramović JM, Stamenković OS (2012) Biodiesel production by ultrasound-assisted transesterification: state of the art and the perspectives. Renew Sustain Energy Rev 16:1193–1209

    Article  CAS  Google Scholar 

  20. Melais N, Boukachabia M, Aribi-Zouioueche L et al (2015) Easy preparation of enantiomerically enriched heteroaromatic alcohols through lipase-catalyzed acylation with succinic anhydride under unconventional activation. Bioprocess Biosyst Eng 38:1579–1588

    Article  CAS  Google Scholar 

  21. Cintas P, Luche JL (1999) A sonochemical approach. Green Chem 1:115–125

    Article  CAS  Google Scholar 

  22. Lerin LA, Loss RA, Remonatto D et al (2014) A review on lipase-catalyzed reactions in ultrasound-assisted systems. Bioprocess Biosyst Eng 37:2381–2394

    Article  CAS  Google Scholar 

  23. Batistella L, Ustra MK, Richetti A et al (2012) Assessment of two immobilized lipases activity and stability to low temperatures in organic solvents under ultrasound-assisted irradiation. Bioprocess Biosyst Eng 35:351–358

    Article  CAS  Google Scholar 

  24. Jadhav SH, Gogate PR (2014) Intensification in the activity of lipase enzyme using ultrasonic irradiation and stability studies. Ind Eng Chem 53:1377–1385

    Article  CAS  Google Scholar 

  25. Bhatia SP (2007) Fragrance material review on cinnamyl propionate. Food Chem Toxicol 45:82–85

    Article  Google Scholar 

  26. Dhake KP, Tambade PJ, Qureshi ZS et al (2011) HPMC-PVA film immobilized Rhizopus oryzae lipase as a biocatalyst for transesterification reaction. ACS Catal 1:316–322

    Article  CAS  Google Scholar 

  27. Geng B, Wang M, Qi W (2012) Cinnamyl acetate synthesis by lipase-catalyzed transesterification in a solvent-free system. Biotechnol Appl Biochem 59:270–275

    Article  CAS  Google Scholar 

  28. Badgujar KC, Bhanage BM (2014) Enhanced biocatalytic activity of lipase immobilized on biodegradable copolymer of chitosan and polyvinyl alcohol support for synthesis of propionate ester: kinetic approach. Ind Eng Chem 53:18806–18815

    Article  CAS  Google Scholar 

  29. Yadav GD, Devendran S (2012) Lipase catalyzed synthesis of cinnamyl acetate via transesterification in non-aqueous medium. Process Biochem 47:496–502

    Article  CAS  Google Scholar 

  30. Kuo CH, Chen GJ, Chen CI et al (2014) Kinetics and optimization of lipase-catalyzed synthesis of rose fragrance 2-phenylethyl acetate through transesterification. Process Biochem 49:437–444

    Article  CAS  Google Scholar 

  31. Romero MD, Calvo L, Alba C et al (2007) A kinetic study of isoamyl acetate synthesis by immobilized lipase-catalyzed acetylation in n-hexane. J Biotechnol 127:269–277

    Article  CAS  Google Scholar 

  32. Yadav GD, Trivedi AH (2003) Kinetic modeling of immobilized-lipase catalyzed transesterification of n-octanol with vinyl acetate in non-aqueous media. Enzyme Microbiol Technol 32:783–789

    Article  CAS  Google Scholar 

  33. Klibanov AM (2001) Improving enzymes by using them in organic solvents. Nature 409:241–246

    Article  CAS  Google Scholar 

  34. Ozturk TK, Kilinc A (2010) Immobilization of lipase in organic solvent in the presence of fatty acid additives. J Mol Catal B Enzym 67:214–218

    Article  CAS  Google Scholar 

  35. Priya K, Chadha A (2003) Synthesis of hydrocinnamic esters by Pseudomonas cepacia lipase. Enzyme Microb Technol 32:485–490

    Article  CAS  Google Scholar 

  36. Adlercreutz P (2013) Immobilisation and application of lipases in organic media. Chem Soc Rev 42:6406–6436

    Article  CAS  Google Scholar 

  37. Özbek B, Ülgen KO (2000) The stability of enzymes after sonication. Process Biochem 35:1037–1043

    Article  Google Scholar 

  38. Bansode SR, Rathod VK (2014) Ultrasound assisted lipase catalysed synthesis of isoamyl butyrate. Process Biochem 49:1297–1303

    Article  CAS  Google Scholar 

  39. Trentin CM, Popiolki AS, Batistella L et al (2015) Enzyme-catalyzed production of biodiesel by ultrasound-assisted ethanolysis of soybean oil in solvent-free system. Bioprocess Biosyst Eng 38:437–448

    Article  CAS  Google Scholar 

  40. Zheng MM, Wang L, Huang FH et al (2013) Ultrasound irradiation promoted lipase-catalyzed synthesis of flavonoid esters with unsaturated fatty acids. J Mol Catal B Enzym 95:82–88

    Article  CAS  Google Scholar 

  41. Kim KK, Song HK, Shin DH et al (1997) The crystal structure of a triacylglycerol lipase from Pseudomonas cepacia reveals a highly open conformation in the absence of a bound inhibitor. Structure 5:173–185

    Article  CAS  Google Scholar 

  42. Badgujar KC, Bhanage BM (2014) Synthesis of geranyl acetate in non-aqueous media using immobilized Pseudomonas cepacia lipase on biodegradable polymer film: kinetic modelling and chain length effect study. Process Biochem 49:1304–1313

    Article  CAS  Google Scholar 

  43. Badgujar KC, Dhake KP, Bhanage BM (2013) Immobilization of Candida cylindracea lipase on poly lactic acid, polyvinyl alcohol and chitosan based ternary blend film: characterization, activity, stability and its application for N-acylation. Process Biochem 48:1335–1347

    Article  CAS  Google Scholar 

  44. Badgujar KC, Sasaki T, Bhanage BM (2015) Synthesis of lipase nano-bio-conjugates as an efficient biocatalyst: characterization and activity-stability studies with potential biocatalytic applications. RSC Adv 5:55238–55251

    Article  CAS  Google Scholar 

  45. Badgujar KC, Bhanage BM (2015) Carbohydrate base co-polymers as an efficient immobilization matrix to enhance lipase activity for potential biocatalytic applications. Carbohydr Polym 134:709–717

    Article  CAS  Google Scholar 

  46. Ma L, Persson M, Adlercreutz P (2002) Water activity dependence of lipase catalysis in organic media explains successful transesterification reactions. Enzyme Microb Technol 31:1024–1029

    Article  CAS  Google Scholar 

  47. Turner NA, Vulfson EN (2000) At what temperature can enzymes maintain their catalytic activity? Enzyme Microb Technol 27:108–113

    Article  CAS  Google Scholar 

  48. Badgujar KC, Bhanage BM (2015) Immobilization of lipase on biocompatible co-polymer of polyvinyl alcohol and chitosan for synthesis of laurate compounds in supercritical carbon dioxide using response surface methodology. Process Biochem 50:1224–1236

    Article  CAS  Google Scholar 

  49. Badgujar KC, Bhanage BM (2015) Thermo-chemical energy assessment for production of energy-rich fuel additive compounds by using levulinic acid and immobilized lipase. Fuel Process Technol 138:139–146

    Article  CAS  Google Scholar 

  50. Badgujar KC, Bhanage BM (2014) Application of lipase immobilized on the biocompatible ternary blend polymer matrix for synthesis of citronellyl acetate in non-aqueous media: kinetic modelling study. Enzyme Microb Technol 57:16–25

    Article  CAS  Google Scholar 

  51. Badgujar KC, Bhanage BM (2015) Factors governing dissolution process of lignocellulosic biomass in ionic liquid: current status, overview and challenges. Bioresour Technol 178:2–18

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Author Kirtikumar is grateful to the Department of Biotechnology-DBT, India, File No.: (BT/PR4192/PID/6/623/2011), and the Council of Scientific and Industrial Research-CSIR, India File No.: (09/991(0015)/2011-EMR-I), for providing research fund and fellowship, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhalchandra M. Bhanage.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badgujar, K.C., Pai, P.A. & Bhanage, B.M. Enhanced biocatalytic activity of immobilized Pseudomonas cepacia lipase under sonicated condition. Bioprocess Biosyst Eng 39, 211–221 (2016). https://doi.org/10.1007/s00449-015-1505-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-015-1505-5

Keywords

Navigation