Skip to main content
Log in

Enzyme immobilization: an update

  • Review
  • Published:
Journal of Chemical Biology

Abstract

Compared to free enzymes in solution, immobilized enzymes are more robust and more resistant to environmental changes. More importantly, the heterogeneity of the immo-bilized enzyme systems allows an easy recovery of both enzymes and products, multiple re-use of enzymes, continuous operation of enzymatic processes, rapid termination of reactions, and greater variety of bioreactor designs. This paper is a review of the recent literatures on enzyme immobilization by various techniques, the need for immobilization and different applications in industry, covering the last two decades. The most recent papers, patents, and reviews on immobilization strategies and application are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ALG:

Alginate

AuNPs:

Gold nanoparticles

CLEAs:

Cross-linked enzyme aggregates

CLECs:

Cross-linked enzyme crystals

CLIO:

Cross-linked iron oxide

CS:

Chitosan

DEAE:

Dimethylaminoethyl

EDC:

1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide

FDA:

Food and Drug Association

HPLC:

High-performance liquid chromatography

IMAC:

Immobilized metal affinity chromatography

K d :

Dissociation constant

K M :

Michaelis constant

LC–MS:

Liquid chromatography–mass spectrometry

LCST:

Low critical solution temperature

MIONs:

Monocrystalline iron oxide nanoparticles

NHS:

N-Hydroxysuccinimide

Ni-NTA:

Nickel nitrilotriacetic acid

PLA:

Poly(lactic acid)

PLGA:

Poly(lactic-co-glycolic acid)

polyNIPAM:

Poly-N-isopropylacrylamide

PVA:

Polyvinyl alcohol

T m :

Transition temperature

USPIO:

Ultrasmall superparamagnetic iron oxide

References

  1. Gomes-Ruffi CR, Henrique da Cunha R, Almeida EL, Chang YK, Steel KJ (2012) Effect of the emulsifier sodium stearoyl lactylate and of the enzyme maltogenic amylase on the quality of pan bread during storage. LWT- Food Sci Technol 49(1):96–101

    CAS  Google Scholar 

  2. Jaros D, Rohm H (2011) Enzymes Exogenous to Milk in Dairy Technology Transglutaminase Encyclopedia of Dairy Sciences (Second Edition) 297–300

  3. Ismail B, Nielsen SS (2010) Invited review: plasmin protease in milk: current knowledge and relevance to dairy industry. J Dairy Sci 93(11):4999–5009

    CAS  Google Scholar 

  4. Bai Y, Huang H, Meng K, Shi P, Yang P, Luo H, Luo C, Feng Y, Zhang W, Yao B (2012) Identification of an acidic α-amylase from Alicyclobacillus sp. A4 and assessment of its application in the starch industry. Food Chem 113(4):1473–1478

    Google Scholar 

  5. Schückel J, Matura A, van Pée KH (2011) One-copper laccase-related enzyme from Marasmius sp.: purification, characterization and bleaching of textile dyes. Enzyme Microb Technol 48(3):278–284

    Google Scholar 

  6. Hakala TK, Liitiä T, Suurnäkki A (2013) Enzyme-aided alkaline extraction of oligosaccharides and polymeric xylan from hardwood kraft pulp. Carbohydr Polym 93(1):102–108

    CAS  Google Scholar 

  7. Rao CS, Sathish T, Ravichandra P, Prakasham RS (2009) Characterization of thermo- and detergent stable serine protease from isolated Bacillus circulans and evaluation of eco-friendly applications. Process Biochem 44(3):262–268

    Google Scholar 

  8. Soldatkin OO, Kucherenko IS, Pyeshkova VM, Kukla AL, Jaffrezic-Renault N, El'skaya AV, Dzyadevych SV, Soldatkin AP (2012) Novel conductometric biosensor based on three-enzyme system for selective determination of heavy metal ions. Bioelectrochemistry 83:25–30

    CAS  Google Scholar 

  9. Apetrei IM, Rodriguez-Mendez ML, Apetrei C, de Saja JA (2013) Enzyme sensor based on carbon nanotubes/cobalt(II) phthalocyanine and tyrosinase used in pharmaceutical analysis. Sens Actuators B 177:138–144

    CAS  Google Scholar 

  10. Das R, Ghosh S, Bhattacharje C (2012) Enzyme membrane reactor in isolation of antioxidative peptides from oil industry waste: a comparison with non-peptidic antioxidants. LWT- Food Sci Technol 47(2):238–245

    CAS  Google Scholar 

  11. Atadashi IM, Aroua MK, Abdul Aziz A (2010) High quality biodiesel and its diesel engine application: a review. Renew Sustain Energy Rev 14:1999–2008

    CAS  Google Scholar 

  12. Luo K, Yang Q, Yu J, Li XM, Yang GJ, Xie BX, Yang F, Zheng W, Zeng GM (2011) Combined effect of sodium dodecyl sulfate and enzyme on waste activated sludge hydrolysis and acidification. Bioresour Technol 102(14):7103–7110

    CAS  Google Scholar 

  13. Tonini D, Astrup T (2012) Life-cycle assessment of a waste refinery process for enzymatic treatment of municipal solid waste. Waste Manag 32(1):165–176

    CAS  Google Scholar 

  14. Tong Z, Qingxiang Z, Hui H, Qin L, Yi Z (1997) Removal of toxic phenol and 4-chlorophenol from waste water by horseradish peroxidase 34(4):893–903

  15. Gupta A, Khare SK (2009) Enzymes from solvent-tolerant microbes: useful biocatalysts for non-aqueous enzymology. Crit Rev Biotechnol 29:44–54

    CAS  Google Scholar 

  16. Hartmann M (2005) Ordered mesoporous materials for bioadsorption and biocatalysis. Chem Mater 17:4577–4593

    CAS  Google Scholar 

  17. Kallenberg AI, van Rantwijk F, Sheldon RA (2005) Immobilization of penicillin G acylase: the key to optimum performance. Adv Synth Catal 347:905–926

    CAS  Google Scholar 

  18. Pierre AC (2004) The sol–gel encapsulation of enzymes. Biocatal Biotransfor 22:145–170

    CAS  Google Scholar 

  19. Cherry JR, Fidantsef AL (2003) Directed evolution of industrial enzymes: an update. Curr Opin Biotechnol 14:438–443

    CAS  Google Scholar 

  20. Kress J, Zanaletti R, Amour A, Ladlow M, Frey JG, Bradley M (2002) Enzyme accessibility and solid supports: which molecular weight enzymes can be used on solid supports? An investigation using confocal Raman microscopy. Chem Eur J 8:3769–3772

    CAS  Google Scholar 

  21. Bommarius AS, Riebel BR (2004) Biocatalysis: fundamentals and applications. Wiley-VCH, Weinheim

  22. Massolini G, Calleri E (2005) Immobilized trypsin systems coupled on-line to separation methods: recent developments and analytical applications. J Sep Sci 28:7–21

    CAS  Google Scholar 

  23. Cao L, van Langen L, Sheldon RA (2003) Immobilised enzymes: carrier-bound of carrier-free? Curr Opin Biotechnol 14:387–394

    CAS  Google Scholar 

  24. Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CT-W, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenkert JL (1992) A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc 114:10834–10843

    CAS  Google Scholar 

  25. Deere J, Magner E, Wall JG, Hodnett BK (2002) Mechanistic and structural features of protein adsorption onto mesoporous silicates. J Phys Chem B 106:7340–7347

    CAS  Google Scholar 

  26. Cang-Rong JT, Pastorin G (2009) The influence of carbon nanotubes on enzyme activity and structure: investigation of different immobilization procedures through enzyme kinetics and circular dichroism studies. Nanotechnology 20:1–20

    Google Scholar 

  27. Köhn M, Breinbauer R (2004) The Staudinger ligation—a gift to chemical biology. Angew Chem 43:3106–3116

    Google Scholar 

  28. Soellner MB, Dickson KA, Nilsson BL, Raines RT (2003) Site-specific protein immobilization by Staudinger ligation. J Am Chem Soc 125:11790–11791

    CAS  Google Scholar 

  29. Kalia J, Abbott NL, Raines RT (2007) General method for site-specific protein immobilization by Staudinger ligation. Bioconjug Chem 18:1064–1069

    CAS  Google Scholar 

  30. Kalia J, Raines RT (2006) Reactivity of intein thioesters: appending a functional group to a protein. Chembiochem 7:1375–1383

    CAS  Google Scholar 

  31. Moses JE, Moorhouse AD (2007) The growing applications of click chemistry. Chem Soc Rev 36:1249–1262

    CAS  Google Scholar 

  32. Tron GC, Pirali T, Billington RA, Canonico PL, Sorba G, Genazzani AA (2008) Click chemistry reactions in medicinal chemistry: applications of the 1,3-dipolar cycloaddition between azides and alkynes. Med Res Rev 28:278–308

    CAS  Google Scholar 

  33. Song W, Wang Y, Qu J, Lin Q (2008) Selective functionalization of a genetically encoded alkene-containing protein via “photoclick chemistry” in bacterial cells. J Am Chem Soc 130:9654–9655

    CAS  Google Scholar 

  34. Lauer SA, Nolan JP (2002) Development and characterization of Ni-NTA-bearing microspheres. Cytometry 48:136–145

    CAS  Google Scholar 

  35. Hutsell SQ, Kimple RJ, Siderovski DP, Willard FS, Kimple AJ (2010) High-affinity immobilization of proteins using biotin- and GST-based coupling strategies. Methods Mol Biol 627:75–90

    CAS  Google Scholar 

  36. Chattopadhaya S, Abu Bakar FB, Yao SQ (2009) Expanding the chemical biologist’s tool kit: chemical labelling strategies and its applications. Curr Med Chem 16:4527–4543

    CAS  Google Scholar 

  37. Hodneland CD, Lee YS, Min DH, Mrksich M (2002) Selective immobilization of proteins to self-assembled monolayers presenting active site-directed capture ligands. Proc Natl Acad Sci 99:5048–5052

    CAS  Google Scholar 

  38. Stayner RS, Min DJ, Kiser PF, Stewart RJ (2005) Site-specific cross-linking of proteins through tyrosine hexahistidine tags. Bioconjug Chem 16:1617–1623

    CAS  Google Scholar 

  39. Endrizzi BJ, Huang G, Kiser PF, Stewart RJ (2006) Specific covalent immobilization of proteins through dityrosine cross-links. Langmuir 22:11305–11310

    CAS  Google Scholar 

  40. Sheldon RA (2007) Enzyme immobilization: the quest for optimum performance. Adv Synth Catal 349:1289–1307

    CAS  Google Scholar 

  41. Sheldon RA (2007) Cross-linked enzyme aggregates (CLEAs): stable and recyclable biocatalysts. Biochem Soc Trans 35:1583–1587

    CAS  Google Scholar 

  42. Girelli AM, Mattei E (2005) Application of immobilized enzyme reactor in on-line high performance liquid chromatography: a review. J Chromatogr B 819:3–16

    CAS  Google Scholar 

  43. Sakaguchi K, Matsui M, Mizukami F (2005) Applications of zeolite inorganic composites in biotechnology: current state and perspectives. Appl Microbiol Biotechnol 67:306–311

    CAS  Google Scholar 

  44. Boller T, Meier C, Menzler S (2002) EUPERGIT oxirane acrylic beads: how to make enzymes fit for biocatalysis. Org Process Res Dev 6:509–519

    CAS  Google Scholar 

  45. Katchalski-Katzir E, Kraemer DM (2000) Eupergit® C, a carrier for immobilization of enzymes of industrial potential. J Mol Catal B Enzym 10:157–176

    CAS  Google Scholar 

  46. Agostinelli E, Belli F, Tempera G, Mura A, Floris G, Toniolo L, Vavasori A, Fabris, Momo F, Stevanato R (2007) Polyketone polymer: a new support for direct enzyme immobilization. J Biotechnol 127:670–678

    CAS  Google Scholar 

  47. van de Velde F, Lourenço ND, Pinheiro HM, Bakker M (2002) Carrageenan: a food-grade and biocompatible support for immobilisation techniques. Adv Synth Catal 344:815–835

    Google Scholar 

  48. Tripathi A, Sami H, Jain SR, Viloria-Cols M, Zhuravleva N, Nilsson G, Jungvid H, Kumar A (2010) Improved bio-catalytic conversion by novel immobilization process using cryogel beads to increase solvent production. Enzym Microb Technol 47:44–51

    CAS  Google Scholar 

  49. Hudson S, Cooney J, Magner E (2008) Proteins in mesoporous silicates. Angew Chem 47:8582–8594

    CAS  Google Scholar 

  50. Blanco RM, Terreros P, Fernandez-Perez M, Otero C, Diaz-Gonzalez G (2004) Fictionalization of mesoporous silica for lipase immobilization—characterization of the support and the catalysts. J Mol Catal B Enzym 30:83–93

    CAS  Google Scholar 

  51. Ho LF, Li SY, Lin SC, Wen-Hwei H (2004) Integrated enzyme purification and immobilization processes with immobilized metal affinity adsorbents. Process Biochem 39:1573–1581

    CAS  Google Scholar 

  52. Vianello F, Zennaro L, Di Paolo ML, Rigo A, Malacarne C, Scarpa M (2000) Preparation, morphological characterization and activity of thin films of horseradish peroxidase. Biotech Bioeng 68:488–495

    CAS  Google Scholar 

  53. Cabrera K (2004) Applications of silica-based monolithic HPLC columns. J Sep Sci 27:843–852

    CAS  Google Scholar 

  54. Majors RE (2006) Developments in HPLC column packing design. LCGC 24:8–15

    CAS  Google Scholar 

  55. Xu L, Feng YQ, Da SL, Shi ZG (2004) Applications of ordered mesoporous materials in separation science. Chin J Anal Chem 32:374–380

    CAS  Google Scholar 

  56. David AE, Wang NS, Yang VC, Yang AJ (2006) Chemically surface modified gel (CSMG): an excellent enzyme-immobilization matrix for industrial processes. J Biotechnol 125:395–407

    CAS  Google Scholar 

  57. Klouda L, Mikos AG (2008) Thermoresponsive hydrogels in biomedical applications. Eur J Pharm Biopharm 68:34–45

    CAS  Google Scholar 

  58. Klis M, Karbarz M, Stojek Z, Rogalski J, Bilewicz R (2009) Thermoresponsive poly(N-isopropylacrylamide) gel for immobilization of laccase on indium tin oxide electrodes. J Phys Chem B 113:6062–6067

    CAS  Google Scholar 

  59. Lozinsky VI, Simenel IA, Kulakova VK, Kurskaya EA, Babushkina TA, Klimova TP, Burova TV, Dubovik AS, Grinberg VY, Galaev IY, Mattiasson B, Khokhlov AR (2003) Synthesis and studies of N-vinylcaprolactam/N-vinylimidazole copolymers that exhibit the “protein-like” behaviour in aqueous media. Macromolecules 36:7308–7323

    CAS  Google Scholar 

  60. Virtanen J, Tenhu H (2000) Thermal properties of poly(N-isopropylacrylamide)-g-poly(ethyleneoxide) in aqueous solutions: influence of the number and distribution of the grafts. Macromolecules 33:5970–5975

    CAS  Google Scholar 

  61. Virtanen J, Baron C, Tenhu H (2000) Grafting of poly(N-isopropylacrylamide) with poly(ethyleneoxide) under various reaction conditions. Macromolecules 33:336–341

    CAS  Google Scholar 

  62. Cirpan A, Alkan S, Toppare L, Hepuzer Y, Yagci Y (2003) Immobilization of invertase in conducting copolymers of 3-methylthienyl methacrylate. Bioelectrochemistry 59:29–33

    CAS  Google Scholar 

  63. Kiralpa S, Balika B, Karatasb S, Toppare L, Gungor A (2008) An alternative supporting electrolyte for enzyme immobilization in conducting polymers. Int J Biol Macromol 42:191–194

    Google Scholar 

  64. Lange U, Roznyatovskaya NV, Mirsky VM (2008) Conducting polymers in chemical sensors and arrays. Anal Chim Acta 614:1–26

    CAS  Google Scholar 

  65. Gerard M, Chaubey A, Malhotra BD (2002) Application of conducting polymers to biosensors. Biosens Bioelectron 17:345–359

    CAS  Google Scholar 

  66. Chow DC, Johannes MS, Lee W-K, Clark RL, Zauscher S, Chilkoti A (2005) Nanofabrication with biomolecules. Mater Today 8:30–39

    Google Scholar 

  67. Daniel M-C, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    CAS  Google Scholar 

  68. Selvan ST, Hayakawa T, Nogami M, Kobayashi Y, Liz-Marzan LM, Hamanaka Y, Nakamura AJ (2002) Sol–gel derived gold nanoclusters in silica glass possessing large optical nonlinearities. Phys Chem B 106:10157–10162

    CAS  Google Scholar 

  69. Schellenberger EA, Bogdanov AJ, Hogemann D, Tait J, Weissleder R, Josephson L (2002) Annexin V-CLIO: a nanoparticle for detecting apoptosis by MRI. Mol Imaging 2:102–107

    Google Scholar 

  70. Wunderbaldinger P, Josephson L, Weissleder R (2002) Crosslinked iron oxides (CLIO): a new platform for the development of targeted MR contrast agents. Acad Radiol 9:S304–S306

    Google Scholar 

  71. Keller TM, Michel SC, Frohlich J, Fink D, Caduff R, Marincek B, Kubik-Huch RA (2004) USPIO-enhanced MRI for preoperative staging of gynecological pelvic tumors: preliminary results. Eur Radiol 14:937–944

    Google Scholar 

  72. Kooi ME, Cappendijk VC, Cleutjens KB, Kessels AG, Kitslaar PJ, Borgers M, Frederik PM, Daemen MJ, van Engelshoven JM (2003) Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation 107:2453–2458

    CAS  Google Scholar 

  73. Funovics MA, Kapeller B, Hoeller C, Su HS, Kunstfeld R, Puig S, Macfelda K (2004) MR imaging of the her2/neu and 9.2.27 tumor antigens using immunospecific contrast agents. Magn Reson Imaging 22:843–850

    CAS  Google Scholar 

  74. Krause MH, Kwong KK, Gragoudas ES, Young LH (2004) MRI of blood volume with superparamagnetic iron in choroidal melanoma treated with thermotherapy. Magn Reson Imaging 22:779–787

    CAS  Google Scholar 

  75. Kluchova K, Zboril R, Tucek J, Pecova M, Zajoncova L, Safarik I, Mashlan M, Markova I, Jancik D, Sebela M, Bartonkova H, Bellesi V, Novak P, Petridis D (2009) Superparamagnetic maghemite nanoparticles from solid-state synthesis—their functionalization towards peroral MRI contrast agent and magnetic carrier for trypsin immobilization. Biomaterials 30:2855–63

    CAS  Google Scholar 

  76. Kouassi G, Irudayaraj J, McCarty G (2005) Activity of glucose oxidase functionalized onto magnetic nanoparticles. Biomagn Res Technol 3:1–10

    Google Scholar 

  77. Tsang SC, Yu CH, Gao X, Tam K (2006) Silica-encapsulated nanomagnetic particles as a new recoverable biocatalyst carrier. J Phys Chem B 110:16914–16922

    CAS  Google Scholar 

  78. Simberg D, Duza T, Park JH, Essler M, Pilch J, Zhang L, Derfus AM, Yang M, Hoffman RM, Bhatia S, Sailor MJ, Ruoslahti E (2007) Biomimetic amplification of nanoparticle homing to tumors. Proc Anal Nat Sci 104:932–936

    Google Scholar 

  79. Mornet S, Vasseur S, Grasset F, Duguet E (2004) Magnetic nanoparticle design for medical diagnosis and therapy. J Mater Chem 14:2161–2175

    CAS  Google Scholar 

  80. Bergemann C, Muller-Schulte D, Oster J, Brassard LA, Lubbe AS (1999) Magnetic ion-exchange nano- and microparticles for medical biochemical and molecular biological applications. J Magn Magn Mater 194:45–52

    CAS  Google Scholar 

  81. Lee J, Isobe T, Senna M (1996) Preparation of ultrafine Fe3O4 particles by precipitation in the presence of PVA at high pH. J Colloid Interface Sci 177:490–494

    CAS  Google Scholar 

  82. Laurent N, Haddoub R, Flitsch SL (2008) Enzyme catalysis on solid surfaces. Trends Biotechnol 26:328–37

    CAS  Google Scholar 

  83. Laurent S, Forge D, Port M, Roch A, Robic C, Elst LV, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterization and biochemical applications. Chem Rev 108:2064–2110

    CAS  Google Scholar 

  84. Li Y, Yan B, Deng C, Yu W, Xu X, Yang P, Zhang X (2007) Efficient on-chip proteolysis system based on functionalized magnetic silica microspheres. Proteomics 7:2330–2339

    CAS  Google Scholar 

  85. Sheldon RA, Schoevaart R, van Langen L (2005) A novel method for enzyme immobilization. Biocat Biotrans 2005:141–147

    Google Scholar 

  86. Illanes A, Wilson L, Caballero E, Fernandez-Lafuente R, Guisan JM (2006) Crosslinked penicillin acylase aggregates for synthesis of beta-lactam antibiotics in organic medium. Appl Biochem Biotechnol 133:189–202

    CAS  Google Scholar 

  87. Brena BM, Batista-Viera F (2006) Immobilization of enzymes: a literature survey. In: Guisan JM (ed) Immobilization of enzymes and cells, 2nd edn. Springer, New York, pp 15–30

  88. Taylor IN, Brown RC, Bycroft M, King G, Littlechild JA, Lloyd MC, Praquin C, Toogood HS, Taylor SJ (2004) Application of thermophilic enzymes in commercial biotransformation processes. Biochem Soc Trans 32:290–292

    CAS  Google Scholar 

  89. Carrea G, Riva S (2000) Properties and synthetic applications of enzymes in organic solvents. Angew Chem 39:2226–2254

    CAS  Google Scholar 

  90. Wilson GS, Hu Y (2000) Enzyme-based biosensors for in vivo measurements. Chem Rev 100:2693–2704

    CAS  Google Scholar 

  91. Vianello F, Bortoluzzi S, Zennaro L, Rigo A (2002) Determination of glucose oxidase immobilised as monolayer onto a flat surface. J Biochem Biophys Methods 51:263–271

    CAS  Google Scholar 

  92. Vianello F, Cambria A, Ragusa S, Cambria MT, Rigo A (2004) A high sensitivity amperometric biosensor using a monomolecular layer of laccase as biorecognition element. Biosens Bioelectron 20:315–321

    CAS  Google Scholar 

  93. Vianello F, Ragusa S, Cambria MT, Rigo A (2006) A high sensitivity amperometric biosensor using laccase as biorecognition element. Biosens Bioelectron 21:2155–2160

    CAS  Google Scholar 

  94. Vianello F, Zennaro L, Rigo A (2007) A coulometric biosensor to determine hydrogen peroxide using a monomolecular layer of horseradish peroxidase immobilized on a glass surface. Biosens Bioelectron 22:2694–2699

    CAS  Google Scholar 

  95. Chudy M, Grabowska I, Ciosek P, Filipowicz-Szymanska A, Stadnik D, Wyzkiewicz I, Jedrych E, Juchniewicz M, Skolimowski M, Ziolkowska K, Kwapiszewski R (2009) Miniaturized tools and devices for bioanalytical applications: an overview. Anal Bioanal Chem 395:647–668

    CAS  Google Scholar 

  96. Rapp BE, Gruhl FJ, Länge K (2010) Biosensors with label-free detection designed for diagnostic applications. Anal Bioanal Chem 398:2403–2412

    Google Scholar 

  97. Ronkainen NJ, Halsall HB, Heineman WR (2010) Electrochemical biosensors. Chem Soc Rev 39:1747–1763

    CAS  Google Scholar 

  98. Jin W, Brennan JD (2002) Properties and applications of proteins encapsulated within sol–gel derived materials. Anal Chim Acta 461:1–36

    CAS  Google Scholar 

  99. Lee J, Kim J, Kim J, Jia H, Kim MI, Kwak JH, Jin S, Dohnalkova A, Park HG, Chang HN, Wang P, Grate JW, Hyeon T (2005) Simple synthesis of hierarchically ordered mesocellular mesoporous silica materials hosting crosslinked enzyme aggregates. Small 1:744–753

    CAS  Google Scholar 

  100. Vinu A, Murugesan V, Tangermann O, Hartmann M (2004) Adsorption of cytochrome c on mesoporous molecular sieves: influence of pH, pore diameter, and aluminum incorporation. Chem Mater 16:3056–3065

    CAS  Google Scholar 

  101. Miyata T, Jikihara A, Nakamae K, Hoffman AS (2004) Preparation of reversibly glucose-responsive hydrogels by covalent immobilization of lectin in polymer networks having pendant glucose. J Biomater Sci Polym 15:1085–1098

    CAS  Google Scholar 

  102. Lakard B, Herlem G, Lakard S, Antoniou A, Fahys B (2004) Urea potentiometric biosensor based on modified electrodes with urease immobilized on polyethylenimine films. Biosens Bioelectron 19:1641–1646

    CAS  Google Scholar 

  103. Kuralay F, Özyörük KH, Yıldız A (2005) Potentiometric enzyme electrode for urea determination using immobilized urease in poly(vinylferrocenium) film. Sens Actuators B 109:194–199

    CAS  Google Scholar 

  104. Tischer W, Wedekind F (1999) Immobilized enzymes: methods and applications. Top Curr Chem 200:95–126

    CAS  Google Scholar 

  105. Sanjay G, Sugunan S (2005) Glucoamylase immobilized on montmorillonite: synthesis, characterization & starch hydrolysis activity in a fixed bed reactor. Catal Commun 6:525–529

    CAS  Google Scholar 

  106. Reshmi R, Sanjay G, Sugunan S (2006) Enhanced activity and stability of a-amylase immobilized on alumina. Catal Commun 7:460–465

    CAS  Google Scholar 

  107. Martin CR (1994) Nanomaterials: a membrane-based synthetic approach. Science 266:1961–1966

    CAS  Google Scholar 

  108. Metzger R, Konovalov V, Sun M, Xu T, Zangari G, Xu B, Benakli M (2000) Magnetic nanowires in hexagonally ordered pores of alumina. IEEE Trans Magn 36:30–35

    CAS  Google Scholar 

  109. Xiao Z, Han C, Welp U, Wang H, Kwok W, Willing G, Hiller J, Cook R, Miller D, Crabtree G (2002) Fabrication of alumina nanotubes and nanowires by etching porous alumina membranes. Nano Lett 2:1293–1297

    CAS  Google Scholar 

  110. Kohli P, Wirtz M, Martin CR (2004) Nanotube membrane based biosensors. Electroanalysis 16:9–12

    CAS  Google Scholar 

  111. Steinle ED, Mitchell DT, Wirtz M, Lee SB, Young VY, Martin CR (2002) Ion channel mimetic micropore and nanotube membrane sensors. Anal Chem 74:2416–2421

    CAS  Google Scholar 

  112. Vlassiouk PT, Smirnov S (2005) Sensing DNA hybridization via ionic conductance through a nanoporous electrode. Langmuir 21:4776–4778

    CAS  Google Scholar 

  113. Monti R, Basilio CA, Trevisan HC, Contiero J (2000) Purification of papain from fresh latex of Carica papaya. Braz Arch Biol Technol 43:501–507

    CAS  Google Scholar 

  114. Sumantha A, Larroche C, Pandey A (2006) Microbiology and industrial biotechnology of food-grade proteases: a perspective. Food Technol Biotechnol 44:211–20

    CAS  Google Scholar 

  115. Afaq S, Iqbal J (2001) Immobilization and stabilization of papain on chelating sepharose: a metal chelate regenerable carrier. Electron J Biotechnol 4:120–124

    Google Scholar 

  116. Homaei A, Sajedi R, Seifzadeh S, Sariri R, Stevanato R (2010) Cystein enhances activity and stability of immobilized papain. Amino Acids 38:937–942

    CAS  Google Scholar 

  117. Shukor Y, Baharom NA, Abd Rahman F, Puad Abdullah M, Shamaan NA, Arif Syed M (2006) Development of a heavy metals enzymatic-based assay using papain. Anal Chim Acta 566:283–288

    CAS  Google Scholar 

  118. Hyndman D, Burrell R, Lever G, Flynn TG (2004) Protein immobilization to alumina supports: II. Papain immobilization to alumina via organophosphate linkers. Biotechnol Bioeng 40:1328–1336

    Google Scholar 

  119. Han X, Aslanian A, Yates JR (2008) Mass spectrometry for proteomics. Curr Opin Chem Biol 12:483–487

    CAS  Google Scholar 

  120. Kalli A, Hakansson K (2008) Comparison of the electron capture dissociation fragmentation behavior of doubly and triply protonated peptides from trypsin, Glu-C, and chymotrypsin digestion. J Proteome Res 7:2834–2838

    CAS  Google Scholar 

  121. Tolmachev AV, Monroe ME, Purvine SO, Moore RJ, Jaitly N, Adkins JN, Anderson GA, Smith RD (2008) Characterization of strategies for obtaining confident identifications in bottom-up proteomics measurements using hybrid FTMS instruments. Anal Chem 80:8514–8519

    CAS  Google Scholar 

  122. Bryjak J, Kruczkiewicz P, Rekuć A, Peczyńska-Czoch W (2007) Laccase immobilization on copolymer of butyl acrylate and ethylene glycol dimethacrylate. Biochem Eng J 35:325–327

    CAS  Google Scholar 

  123. Palm AK, Novotny MV (2004) Analytical characterization of a facile porous polymer monolithic trypsin microreactor enabling peptide mass mapping. Rapid Commun Mass Spectrom 18:1374–1379

    CAS  Google Scholar 

  124. Freije JR, Mulder PPMFA, Werkman W, Rieux L, Niederlander HAG, Verpoorte E, Bischoff R (2005) Chemically modified, immobilized trypsin reactor with improved digestion efficiency. J Proteome Res 4:1805–1808

    CAS  Google Scholar 

  125. Goradia D, Cooney J, Hodnett BK, Magner E (2006) Characteristics of a mesoporous silicate immobilized trypsin bioreactor in organic media. Biotechnol Prog 22:1125–1131

    CAS  Google Scholar 

  126. Ota S, Miyazaki S, Matsuoka H, Morisato K, Shintani Y, Nakanishi K (2007) High-throughput protein digestion by trypsin-immobilized monolithic silica with pipette-tip formula. J Biochem Biophys Methods 70:57–62

    CAS  Google Scholar 

  127. Bencina K, Podgornik A, Strancar A, Bencina M (2004) Enzyme immobilization on epoxy- and 1,1′-carbonyldiimidazole-activated methacrylate-based monoliths. J Sep Sci 27:811–818

    CAS  Google Scholar 

  128. Monzo A, Sperling E, Guttman A (2009) Proteolytic enzyme immobilization techniques for MS-based protein analysis. TrAC Trends Anal Chem 28(7):854–864

    CAS  Google Scholar 

  129. Stigter ECA, de Jong GJ, van Bennekom WP (2007) Development of an open-tubular trypsin reactor for on-line digestion of proteins. Bioanal Chem 389:1967–1972

    CAS  Google Scholar 

  130. Couto RS, Herrera TJL (2006) Industrial and biotechnological applications of laccases: a review. Biotechnol Adv 24:500–513

    Google Scholar 

  131. Kunamneni A, Plou FJ, Ballesteros A, Alcalde M (2008) Laccases and their applications: a patent review. Recent Pat Biotechnol 2:10–24

    CAS  Google Scholar 

  132. Riva S (2006) Laccases: blue enzymes for green chemistry. Trends Biotechnol 24:219–226

    CAS  Google Scholar 

  133. Xu F (2005) Applications of oxidoreductases: recent progress. Ind Biotechnol 1:38–50

    CAS  Google Scholar 

  134. Claus H, Faber G, König H (2002) Redox-mediated decolorization of synthetic dyes by fungal laccases. Appl Microbiol Biotechnol 59:672–678

    CAS  Google Scholar 

  135. Rochefort D, Leech D, Bourbonnais R (2004) Electron transfer mediator systems for bleaching of paper pulp. Green Chem 6:14–24

    CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the financial support by Hormozgan Science and Technology Park.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ahmad Abolpour Homaei, Reyhaneh Sariri or Roberto Stevanato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Homaei, A.A., Sariri, R., Vianello, F. et al. Enzyme immobilization: an update. J Chem Biol 6, 185–205 (2013). https://doi.org/10.1007/s12154-013-0102-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12154-013-0102-9

Keywords

Navigation