Skip to main content
Log in

Synthesis, characterization and kinetics of formation of silver nanoparticles by reduction with adrenaline in the micellar media

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The present paper describes about the easy, simple and convenient procedure for the synthesis of silver nanoparticles (Ag-NPs) in aqueous solutions by the reduction of silver nitrate with adrenaline. The surfactant molecules of cetyltrimethylammonium bromide (CTABr) and sodium dodecyl ate (SDS) behaved differently during the reduction of Ag+ ions by adrenaline. The obtained data suggest that the variation of [CTABr] gave a maxima-like curve for rate constant versus [CTABr], while, the values of rate constant decreased with the increase in [SDS]. The addition of surfactant molecules stabilized the Ag-NPs. The UV–Visible spectra were analyzed to deduce the particle size. The calculated sizes of the nanoparticles were further compared by the TEM images. The XRD spectrum confirmed the crystalline nature of silver nanoparticles having the face-centered cubic crystal structure. The edge length of unit cell was found 4.076 Å. The kinetics of formation of Ag-NPs was performed at different concentrations of adrenaline, AgNO3, NaOH and [surfactant]. The values of rate constant were independent on [adrenaline] and [AgNO3]. The increase in [NaOH] increased the rate of agglomeration of silver particles to form Ag-NPs. A linear relationship was obtained for the plot of rate constant versus [NaOH].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme1
Fig. 9

Similar content being viewed by others

References

  1. Yin Y, Li ZY, Zhong Z, Gates B, Xia Y, Venkateswaran S (2002) Synthesis and characterization of stable aqueous dispersions of silver nanoparticles through the tollens process. J Mater Chem 12:522–527

    Article  CAS  Google Scholar 

  2. Cushing BL, Koleschineko VL, O’Connor CJ (2004) Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 104:3893–3946

    Article  CAS  Google Scholar 

  3. Burda C, Chen X, Narayanan R, El-Sayed MA (2005) The chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102

    Article  CAS  Google Scholar 

  4. Hosokawa M, Nogi K, Naito M, Yokoyam T (2008) Nanoparticle technology handbook. Jordan Hill, Oxford UK, pp 113–176

    Google Scholar 

  5. Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83

    Article  CAS  Google Scholar 

  6. García-Barrasa J, López-de-Luzuriaga JM, Monge M (2011) Silver nanoparticles: synthesis through chemical methods in solution and biomedical applications. Cent Eur J Chem 9:7–19

    Article  Google Scholar 

  7. Abou El-Nour KMM, Eftaiha A, Al-Warthan A, Ammar RA (2010) Synthesis and applications of silver nanoparticles. Arab J Chem 3:135–140

    Article  CAS  Google Scholar 

  8. Khomutov GB, Gubin SP (2002) Interfacial synthesis of noble metal nanoparticles. Mater Sci Eng, C 22:141–146

    Article  Google Scholar 

  9. Oliveira MM, Ugarte D, Zanchet D, Zarbin AJG (2005) Influence of synthetic parameters on the size, structure, and stability of dodecanethiol-stabilized silver nanoparticles. J Colloid Interface Sci 292:429–435

    Article  CAS  Google Scholar 

  10. Tsuji T, Iryo K, Watanabe N, Tsuji M (2002) Preparation of silver nanoparticles by laser ablation in solution: influence of laser wavelength on particle size. Appl Surf Sci 202:80–85

    Article  CAS  Google Scholar 

  11. Pastoriza I, Liz-Marzan LM (2000) Reduction of silver nanoparticles in DMF. Formation of monolayers and stable colloids. Pure Appl Chem 72:83–90

    Google Scholar 

  12. Solomon SD, Bahadory M, Jeyarajasingam AV, Rutkowsky SA, Boritz C (2007) Synthesis of Silver Nanoparticles. J Chem Edu 84:322–325

    Article  CAS  Google Scholar 

  13. Wong H II, Nersisyan H, Won CW, Lee JM, Hwang JS (2010) Preparation of porous silver particles using ammonium formate and its formation mechanism. J Chem Eng 156:459–464

    Article  Google Scholar 

  14. Ong S, Wu J, Moochhala SM, Tan M, Lu J (2008) Development of a chitosan-based wound dressing with improved hemostatic and antimicrobial properties. Biomaterials 29:4323–4332

    Article  CAS  Google Scholar 

  15. Li Y, Leung P, Yao L, Song QW, Newton E (2006) Antimicrobial effect of surgical masks coated with nanoparticles. J Hosp Infect 62:58–63

    Article  CAS  Google Scholar 

  16. Mazeiko V, Kausaite-Minkstimiene A, Ramanaviciene A, Balevicius Z, Ramanavicius A (2013) Gold Nanoparticle and Conducting Polymer—Polyaniline—based Nanocomposites for Glucose Biosensor Design Sensors and Actuators B, 189: 187–193

  17. Ramanaviciene A, Nastajute G, Snitka V, Kausaite A, German N, Barauskas-Memenas D, Ramanavicius A (2009) Spectrophotometric evaluation of gold nanoparticles as red-ox mediator for glucose oxidase. Sens Actuator B 137:483–489

    Article  CAS  Google Scholar 

  18. Oztekin Y, Tok M, Bilici E, Mikoliunaite L, Yazicigil Z, Ramanaviciene A, Ramanavicius A (2012) Copper nanoparticle modified carbon electrode for determination of dopamine. Electrochim Acta 76:201–207

    Article  CAS  Google Scholar 

  19. Yamamoto M, Nakamoto M (2003) Novel preparation of monodispersed silver nanoparticles via amineadducts derived from insoluble silver myristate in tertiary alkylamine. J Mat Chem 13:2064–2065

    Article  CAS  Google Scholar 

  20. Kashiwagi Y, Yamamoto M, Nakamoto M (2006) Facile size-regulated synthesis of silver nanoparticles by controlled thermolysis of silver alkylcarboxylates in the presence of alkylamines with different chain lengths. J Colloid Interface Sci 300:169–175

    Article  CAS  Google Scholar 

  21. Velikov KP, Zegers GE, van Blaaderen A (2003) Synthesis and characterization of large colloidal silver particles. Langmuir 19:1384–1389

    Article  CAS  Google Scholar 

  22. Kurihara LK, Chow GM, Schoen PE (1995) Nanocrystalline metallic powders and films produced by the polyol method. Nanostruct Mater 5:607–613

    Article  CAS  Google Scholar 

  23. Jacob JA, Kapoor S, Biswas N, Mukherjee T (2007) Size tunable synthesis of silver nanoparticles in water–ethylene glycol mixtures. Colloids Surf A Physicochem Eng Aspects 301:329–334

    Article  CAS  Google Scholar 

  24. Raveendran P, Fu J, Wallen SL (2003) Completely “green” synthesis and stabilization of metal nanoparticles. J Am Chem Soc 125:13940–13941

    Article  CAS  Google Scholar 

  25. Yu D, Yam VW-W (2004) Controlled synthesis of monodisperse silver nanocubes in water. J Am Chem Soc 126:13200–13201

    Article  CAS  Google Scholar 

  26. Yu D, Yam VW-W (2005) Hydrothermal-induced as-sembly of colloidal silver spheres into various nano- particles on the basis of htab-modified silver mirror reaction. J Chem Phys B 109:5497–5503

    Article  CAS  Google Scholar 

  27. Hussain S, Akrema Rahisuddin, Khan Zaheer (2014) Extracellular biosynthesis of silver nanoparticles: effects of shape-directing cetyltrimethylammonium bromide, pH, sunlight and additives. Bioprocess Biosyst Eng 37:953–964

    Article  CAS  Google Scholar 

  28. Hussain S, Khan Zaheer (2014) Epigallocatechin-3-gallate-capped Ag nanoparticles: preparation and characterization. Bioprocess Biosyst Eng 37:1221–1231

    Article  CAS  Google Scholar 

  29. Hussain S, Al-Thabaiti SA, Khan Zaheer (2014) Surfactant-assisted bio-conjugated synthesis of silver nanoparticles (AgNPs). Bioprocess Biosyst Eng 37:1727–1735

    Article  CAS  Google Scholar 

  30. Bonevski R, Momirovic-Culjat J, Balint L (1978) Inhibition of epinephrine oxidation in weak alkaline solutions. J Pharm Sci 67:1474–1476

    Article  CAS  Google Scholar 

  31. Grubstein B, Milano EA (1992) Stabilization of epinephrine in a local anesthetic injectable solution using reduced levels of sodium metabisulfite and edta. Drug Dev Ind Pharm 18:1549–1566

    Article  CAS  Google Scholar 

  32. Broadley KJ, Penson PE (2004) The roles of alpha- and beta-adrenoceptor stimulation in myocardial ischaemia. Auton Autacoid Pharmacol 24:87–93

    Article  CAS  Google Scholar 

  33. Al-Ayed AS, Al-Lohedan HA, Rafiquee MZA, Ali MS, Issa ZA (2013) Kinetics of the autoxidation of adrenaline and [copper(II)(adrenaline)]2+ in alkaline aqueous and micellar media. Transition Met Chem 38:173–181

    Article  CAS  Google Scholar 

  34. Hoellein L, Holzgrabe U (2012) Ficts and facts of epinephrine and norepinephrine stability in injectable solutions. Int J Pharmac 434:468–480

    Article  CAS  Google Scholar 

  35. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677

    Article  CAS  Google Scholar 

  36. Hutter E, Fendler JH (2004) Exploitation of localized surface plasmon resonance. Adv Mater 16:1685–1706

    Article  CAS  Google Scholar 

  37. Moores A, Goettmann F (2006) The plasmon band in noble metal nanoparticles: an introduction to theory and applications. New J Chem 30:1121–1132

    Article  CAS  Google Scholar 

  38. Baia L, Simon S (2007) Modern research and educational topics in microscopy, A. Méndez-Vilas and J. Díaz (Eds.), ©FORMATEX 2007, pp 276–283

  39. Baset S, Akbari H, Zeynali H, Shafie M (2011) Size measurement of metal and semiconductor nanoparticles via UV-vis absorption spectra. Dig J Nanomater Biostruct 6:709–716

    Google Scholar 

  40. Baia L, Baia M, Kiefer W, Popp J, Simon S (2006) Structural and morphological properties of silver nanoparticles—phosphate glass composites. Chem Phys 327:63–69

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors extend their appreciation to the Deanship of Scientific Research, College of Science Research Center, King Saud University, Riyadh, Saudi Arabia for supporting this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Z. A. Rafiquee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 441 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafiquee, M.Z.A., Siddiqui, M.R., Ali, M.S. et al. Synthesis, characterization and kinetics of formation of silver nanoparticles by reduction with adrenaline in the micellar media. Bioprocess Biosyst Eng 38, 711–719 (2015). https://doi.org/10.1007/s00449-014-1311-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-014-1311-5

Keywords

Navigation