Skip to main content
Log in

Extracellular biosynthesis of silver nanoparticles: effects of shape-directing cetyltrimethylammonium bromide, pH, sunlight and additives

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The work reported in this paper describes the preparation, morphology, stability and sensitivity of Ag-nanoparticles towards sunlight using Allium sativum, garlic extract for the first time. The synthesized silver particles show an intense surface plasmon resonance band in the visible region at 410 nm. The position of the wavelength maxima, blue and red shift, strongly depends on the sunlight and pH. TEM analysis revealed the presence of spherical, different size (from 5.0 to 30 nm) and garlic constituents bio-conjugated, stabilized and/or layered silver nanoparticles. The concentrations of garlic extract, cetyltrimethylammonium bromide, Ag+ ions and reaction time play vital roles for nucleus formation and the growth processes. Sulfur-containing biomolecules of extract, especially cysteine, are responsible for the reduction of Ag+ ions into metallic Ag0. The agglomeration number of the silver nanoparticles (N Ag) and the average number of free electrons per particle (n fe) are calculated and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Henglein A (1993) J Phys Chem 97:5457–5471

    Article  CAS  Google Scholar 

  2. Sharma VK, Yngard RA, Lin Y (2009) Ads Colloid Interface Sci 145:83–96

    Article  CAS  Google Scholar 

  3. Vaidyanathan R, Kalishwaralal K, Gopalram S, Gurunathan S (2009) Biotechnol Ads 27:924–937

    Article  CAS  Google Scholar 

  4. Khullar P, Singh V, Mahal A, Dave PN, Thakur S, Kaur G, Singh J, Kamboj SS, Bakshi MS (2012) J Phys Chem C 116:8834–8843

    Article  CAS  Google Scholar 

  5. Dreaden EC, Mackey MA, Huang XH, Kang B, El-Sayed MA (2011) Chem Soc Rev 40:3391–3404

    Google Scholar 

  6. Xie J, Lee JY, Wang DIC, Ting YP (2007) ACS Nano 1:429–439

    Article  CAS  Google Scholar 

  7. Tetsumoto T, Gotoh Y, Ishiwatari T (2011) J Colloid Interface Sci 362:267–273

    Article  CAS  Google Scholar 

  8. Bakshi MS (2011) J Phys Chem C 115:13947–13960

    Article  CAS  Google Scholar 

  9. Sonavane GS, Devarajan PV (2007) J Biomed Nanotechnol 3:160–169

    Article  CAS  Google Scholar 

  10. Han BH, Antonietti M (2003) J Mater Chem 13:1793–1796

    Article  CAS  Google Scholar 

  11. Manna A, Imae T, Yogo T, Aoi K, Okazaki M (2002) J Colloid Interf Sci 256:297–303

    Article  CAS  Google Scholar 

  12. Zhang X, Yang R, Yang J, Zhao W, Zheng J, Tian W, Li X (2011) Int J Hydrogen Energ 36:4967–4975

    Article  CAS  Google Scholar 

  13. Dominguez MI, Navarro P, Romero-Sarria F, Frias D, Cruz SA, Delgado JJ, Centeno MA, Montes M, Odriozola JA (2009) J Nanosci Nanotechno 9:3837–3842

    Article  CAS  Google Scholar 

  14. Desai VS, Kowshik M (2009) Res J Microbiol 4:97–103

    Article  CAS  Google Scholar 

  15. Zhu CY, Xue JF, He JH (2009) J Nanosci Nanotechnol 9:3067–3074

    Article  CAS  Google Scholar 

  16. Gao Y, Hao JC (2009) J Phys Chem B 113:9461–9471

    Article  CAS  Google Scholar 

  17. Shameli K, Ahmad MB, Zargar M, Yunus W, Rustaiyan A, Ibrahim NA (2011) Int J Nanomed 6:581–590

    Article  CAS  Google Scholar 

  18. Mohanty S, Mishra S, Jena P, Jacob B, Sarkar B, Sonawane A (2012) Nanomed-Nanotechnol 8:916–924

    Article  CAS  Google Scholar 

  19. Zhu ZC, Wu QS, Chen P, Yang XH (2011) J Nanopart Res 13:5347

    Article  CAS  Google Scholar 

  20. Marambio-Jones C, Hoek EMV (2010) J Nanopart Res 12:1531–1551

    Article  CAS  Google Scholar 

  21. Khan Z, Kumar P, Kabir- ud-Din (2005) J Colloid Interf Sci 290:184–189

  22. Khan Z, Al-Thabaiti SA, Obaid AY, Khan ZA, Al-Youbi AAO (2012) J Colloid Interf Sci 367:101–108

    Article  CAS  Google Scholar 

  23. Linnert T, Mulvaney P, Henglein A, Weller H (1990) J Am Chem Soc 112:4657–4664

    Article  CAS  Google Scholar 

  24. Wei L, Fan YJ, Wang HH, Tian N, Zhou ZY, Sun SG (2012) Electrochim Acta 76:468–474

    Article  CAS  Google Scholar 

  25. Kumar UA, Ranjan K, Sharan C, Hardikar AA, Pundle A, Poddar P (2012) Curr Nanosci 8:130–140

    Article  CAS  Google Scholar 

  26. Norifusa S, Toshio N, Kenta K, Kimihisa Y (2008) Nat Nanotechnol 3:106–111

    Article  CAS  Google Scholar 

  27. Jeon SH, Xu P, Mack NH, Chiang LY, Brown L, Wang HL (2010) J Phys Chem C 114:36–40

    Article  CAS  Google Scholar 

  28. Biacchi AJ, Schaak RE (2011) ACS Nano 5:8089–8099

    Article  CAS  Google Scholar 

  29. Shankar SS, Rai A, Ahmad A, Sastry M (2004) J Colloid Interf Sci 275:496–502

    Article  CAS  Google Scholar 

  30. Khan Z, Bashir O, Hussain JI, Kumar S, Ahmad R (2012) Colloid Surf B 98:85–90

    Article  CAS  Google Scholar 

  31. Philip D, Unni C (2011) Physica E 43:1318–1322

    Article  CAS  Google Scholar 

  32. Prathna TC, Chandrasekaran N, Raichur AM, Mukherjee A (2011) Colloid Surf B 82:152–159

    Article  CAS  Google Scholar 

  33. Khan Z, Talib A (2010) Colloid Surf B 76:164–169

    Article  CAS  Google Scholar 

  34. Olatunji MA, McAuley A (1975) J Chem Soc Dalton, 682–687

  35. Mehrotra M, Mehrotra RN (2003) Dalton Trans 3606–3616

  36. Mehta SK, Chaudhary S, Gradzielski M (2010) J Colloid Interf Sci 343:447–453

    Article  CAS  Google Scholar 

  37. Harada M, Inada Y, Nomura M (2009) J Colloid Interf Sci 337:427–438

    Article  CAS  Google Scholar 

  38. Harada M, Saijo K, Sakamoto N, Ito K (2010) J Colloid Interf Sci 343:423–432

    Article  CAS  Google Scholar 

  39. Bakshi MS, Kaur H, Banipal TS, Singh N, Kaur G (2010) Langmuir 26:13535–13544

    Article  CAS  Google Scholar 

  40. Bakshi MS, Kaur H, Khullar P, Banipal TS, Kaur G, Singh N (2011) J Phys Chem C 115:2982–2992

    Article  CAS  Google Scholar 

  41. Huang ZY, Mills G, Hajek B (1993) J Phys Chem 97:11542–11550

    Article  CAS  Google Scholar 

  42. Ershov BG, Janata E, Henglein A, Fojtik A (1993) J Phys Chem 97:4589–4594

    Article  CAS  Google Scholar 

  43. Son SG, Hebrant M, Tecilla P, Scrimin P, Tondre C (1992) J Phy Chem 96:11072–11078

    Article  CAS  Google Scholar 

  44. Richmond W, Tondre C, Krzyzanowska P, Szymanowaski J (1995) J Chem Soc Faraday Trans 91:657–663

    Article  CAS  Google Scholar 

  45. Tondre C, Hebrant M (1997) J Mol Liq 72:279–294

    Article  CAS  Google Scholar 

  46. Bacaloglu R, Bunton CA, Ortega F (1989) J Phys Chem 93:1497–1502

    Article  CAS  Google Scholar 

  47. Murayama K, Tomida M (2004) Biochemistry 43:11526–11532

    Article  CAS  Google Scholar 

  48. Bakshi MS, Sachar S, Kaur G, Bhandari P, Biesinger MC, Possmayer F, Petersen NO (2008) Cryst Growth Des 8:1713–1719

    Article  CAS  Google Scholar 

  49. Bakshi MS, Possmayer F, Petersen NO (2008) J Phys Chem C 112:8259–8265

    Article  CAS  Google Scholar 

  50. Long D, Wu G, Chen S (2007) Radiat Phys Chem 76:1126–1131

    Article  CAS  Google Scholar 

  51. Alvarez-Puebla RA, Arceo E, Goulet PJG, Garrido JJ, Aroca RF (2005) J Phys Chem B 109:3787–3792

    Article  CAS  Google Scholar 

  52. Mulvaney P, Henglein A (1990) J Phys Chem 94:4182–4188

    Article  CAS  Google Scholar 

  53. Linnert T, Mulvaney P, Henglein A (1993) J Phys Chem 97:679–682

    Article  CAS  Google Scholar 

  54. Strelow F, Henglein A (1995) J Phys Chem 99:11834–11838

    Article  CAS  Google Scholar 

  55. Hanglein A (1998) Chem Mater 10:444–450

    Article  Google Scholar 

  56. Bunton CA, Savelli G (1987) Adv Phys Org Chem 22:213–309

    Google Scholar 

  57. Bunton CA, Nome F, Quina FH, Romsted LS (1991) Accounts Chem Res 24:357–364

    Article  CAS  Google Scholar 

  58. Dedinaite A, Lundin M, Macakova L, Auletta T (2005) Langmuir 21:9502–9509

    Article  CAS  Google Scholar 

  59. Kabir-ud-Din, Salem JKJ, Kumar S, Khan Z (1999) J Colloid Interface Sci 215:9–15

  60. Al-Lohedan HA, Bunton CA, Romsted LS (1981) J Phys Chem 85:2123–2129

    Article  CAS  Google Scholar 

  61. Bunton CA, Moffatt JR (1988) J Phys Chem 92:2896–2902

    Article  CAS  Google Scholar 

  62. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin

    Book  Google Scholar 

  63. Kamat PV, Flumiani M, Hartland GV (1998) J Phys Chem B 102:3123–3128

    Article  CAS  Google Scholar 

  64. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) J Phys Chem B 107:668–677

    Article  CAS  Google Scholar 

  65. Huang H, Sun CQ, Tianshu Z, Hing P (2001). doi:10.1103/PhysRevB63:184112

  66. Aihara N, Torigoe K, Esumi K (1998) Langmuir 14:4945–4949

    Article  CAS  Google Scholar 

  67. Liu Z, Wang H, Li H, Wang X (1998) Appl Phys Lett 72:1823–1825

    Article  CAS  Google Scholar 

  68. Shvalagin VV, Stroyuk AL, Kuchmii SY (2007) J Nanopart Res 9:427–440

    Article  CAS  Google Scholar 

  69. Pileni MP (1998) New J Chem 22:693–702

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaheer Khan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1,487 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hussain, S., Akrema, Rahisuddin et al. Extracellular biosynthesis of silver nanoparticles: effects of shape-directing cetyltrimethylammonium bromide, pH, sunlight and additives. Bioprocess Biosyst Eng 37, 953–964 (2014). https://doi.org/10.1007/s00449-013-1067-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-013-1067-3

Keywords

Navigation