Skip to main content
Log in

Kinetics of the autoxidation of adrenaline and [copper(II)(adrenaline)]2+ in alkaline aqueous and micellar media

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

The kinetics of autoxidation of adrenaline and [Cu(adrenaline)]2+ complex by dissolved oxygen in alkaline aqueous and micellar media has been studied. The reaction is initiated by the removal of amino-H+ protons of adrenaline by hydroxide ion, followed by cyclization. The values of (1/k obs) for the autoxidation of both species were found to be linearly dependent upon 1/[OH]. The reaction follows a consecutive pathway in which the intermediate adrenochrome remains stable for few minutes, and then undergoes further reactions to yield adrenolutin and other products. The [Cu(adrenochrome)]+ complex is stable for a few hours. Studies on the effects of cetyltrimethylammonium bromide (CTAB) and sodium dodecyl sulfate (SDS) on the reactivity of both species revealed different behaviors. The micelles of CTAB catalyzed the rates of autoxidation for both species, whereas SDS micelles inhibited the autoxidation of adrenaline but catalyzed the rate of autoxidation of [Cu(adrenaline)]2+. Addition of the reactive counterion surfactant, cetyltrimethylammonium hydroxide (CTAOH) initially increased the rate constant with the increasing [CTAOH], until it reached a plateau for k ψ −[CTAOH]. Salts such as NaCl, NaBr, tetramethyl ammonium bromide, and tetraethyl ammonium bromide increased the rate when added at lower concentrations, but had negligible effect at higher concentrations. The results obtained in micellar media were treated according to Berezin’s Pseudophase Model. The various kinetic parameters for the reactions occurring in aqueous and in micellar media are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Scheme 2
Fig. 3
Scheme 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 4

Similar content being viewed by others

References

  1. Giulivi C, Cadenas E (1998) Free Radic Biol Med 25:175–183

    Article  CAS  Google Scholar 

  2. Singal PK, Kapur N, Dhillon KS, Beamish RE, Dhalla NS (1982) Can J Physiol Pharmacol 60:1390–1397

    Article  CAS  Google Scholar 

  3. Singal PK, Beamish RE, Dhalla NS (1983) Adv Exp Med Biol 161:391–401

    Article  CAS  Google Scholar 

  4. Rigobello MP, Scutari G, Boscolo R, Bindoli A (2001) Nitric Oxide Biol Chem 5:39–46

    Article  CAS  Google Scholar 

  5. Raper HS (1928) Physiol Rev 8:245–282

    CAS  Google Scholar 

  6. Bindoli A, Rigobello MP, Deeble DJ (1992) Free Radic Biol Med 13:391–405

    Article  CAS  Google Scholar 

  7. Heacock RA (1959) Chem Rev 59:181–237

    Article  CAS  Google Scholar 

  8. Hawley MD, Tatawawadi SV, Piekarski S, Adams RN (1967) J Am Chem Soc 89:447–450

    Article  CAS  Google Scholar 

  9. Palumbo A, d’Ischia M, Misuraca G, Prota G (1989) Biochim Biophys Acta 990:297–302

    Article  CAS  Google Scholar 

  10. Sokoloski TD, Higuchi T (1962) J Pharm Sci 51:172–177

    Article  CAS  Google Scholar 

  11. Ilhami G (2009) Chem Biol Interact 179:71–80

    Article  Google Scholar 

  12. Romsted LS (1982) Symposium on Surfactants in Solution. Lund, Sweden

  13. Romsted LS (1982) Micellization, solubilization and microemulsions. In: Mittal KL (ed) vol 2, Plenum Press, New York

  14. Rosen MJ (2004) Surfactants and interfacial phenomena, 3rd edn. Wiley-Interscienc, New Jersey

    Book  Google Scholar 

  15. Fendler JH, Fendler EJ (1975) Catalysis in micellar and macromolecular systems. Academic Press, New York

    Google Scholar 

  16. Biel JH, Abood LG (1971) Biological amines and physiological membranes in drug therapy. Marcel Dekker, New York

    Google Scholar 

  17. Rahman MS, Korenkiewicz SM (1976) Can J Chem 54:3815–3823

    Article  Google Scholar 

  18. Materazzi S, Vasca E, Tentolini U, Aquili S, Curini R (2002) Thermochim Acta 389:179–184

    Article  CAS  Google Scholar 

  19. Khan MN (2007) Micellar catalysis, surfactant science series, vol 133. CRC Press, Boca Raton

    Google Scholar 

  20. Al-Ayed AS, Ali MS, Al-Lohedan HA, Al-Sulaim AM, Issa ZA (2011) J Colloid Interface Sci 361:205–211

    Article  CAS  Google Scholar 

  21. Al-Lohedan HA, Bunton CA, Romsted LS (1981) J Phys Chem 85:2123–2125

    Article  CAS  Google Scholar 

  22. Al-Lohedan HA, Bunton CA, Mhala MM (1982) J Am Chem Soc 104:6654–6659

    Article  CAS  Google Scholar 

  23. Al-Lohedan HA (1990) J Chem Soc Perkin Trans 2:1401–1406

    Google Scholar 

  24. Al-Shamary MN, Al-Lohedan HA, Rafiquee MZA, Issa ZA (2012) J Phys Org Chem 25:713–719

    Article  CAS  Google Scholar 

  25. Al-Lohedan HA (1995) J Chem Soc Perkin Trans 2:1707–1713

    Google Scholar 

  26. West GB (1947) British J Pharmacol 2:121–130

    CAS  Google Scholar 

  27. Boggess RK, Martin RB (1975) J Am Chem Soc 97:3076–3081

    Article  CAS  Google Scholar 

  28. Karpel RL, Kustin K, Kowalak A, Pastermack RF (1971) J Am Chem Soc 93:1085–1087

    Article  CAS  Google Scholar 

  29. Sun M, Zigman S (1978) Anal Biochem 90:81–89

    Article  CAS  Google Scholar 

  30. Menger FM, Portnoy CE (1967) J Am Chem Soc 89:4698–4703

    Article  CAS  Google Scholar 

  31. Rodenas E, Vera S (1985) J Phys Chem 89:513–516

    Article  CAS  Google Scholar 

  32. Vera S, Rodenas E (1986) Tetrahedron 42:143–149

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding the work through the research group project No. RGP-VPP-148.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamad A. Al-Lohedan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Ayed, A.S., Al-Lohedan, H.A., Rafiquee, M.Z.A. et al. Kinetics of the autoxidation of adrenaline and [copper(II)(adrenaline)]2+ in alkaline aqueous and micellar media. Transition Met Chem 38, 173–181 (2013). https://doi.org/10.1007/s11243-012-9675-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-012-9675-3

Keywords

Navigation