Skip to main content
Log in

Surfactant-assisted bio-conjugated synthesis of silver nanoparticles (AgNPs)

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

A simple one-spot synthetic route for the production of Ag-nanoparticles using aqueous extract of citrus lemon is being reported in presence of shape-directing cetyltrimethylammonium bromide (CTAB). To our knowledge, this is the first report where the biomolecules form a layer around a group of the Ag-nanoparticles in which the inner layer is bound to the AgNPs surface via the hydroxyl groups of citric acid. The appearance of a sharp surface plasmon resonance band in the UV–visible region might be due to the formation of spherical Ag-nanoparticles. Agglomeration number (N Ag), the average number of silver atoms per nanoparticle (N), molar concentrations of nanoparticle (C) in solution, extinction coefficient (ε) and increase in the Fermi energy (ΔE F) were calculated using Mie theory and discussed. Interestingly, reaction mixture became turbid at higher [CTAB] due to the uncontrolled growth of Ag-nanoparticles. The transmission electron microscopic images of nanoparticles, recorded at different magnifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7

Similar content being viewed by others

References

  1. Nikoobakht B, El-Sayed MA (2001) Evidence for bilayer assembly of cationic surfactants on the surface of gold nanorods. Langmuir 17:6368–6374

    Article  CAS  Google Scholar 

  2. Mantion A, Guex AG, Foelske A, Mirolo L, Fromm KM, Painsi M, Taubert A (2008) Silver nanoparticle engineering via oligovaline organogels. Soft Matter 4:606–617

    Article  CAS  Google Scholar 

  3. Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 145:83–96

    Article  CAS  Google Scholar 

  4. Huang Y-F, Lin Y-W, Chang H-T (2006) Growth of various Au–Ag nanocomposites from gold seeds in amino acid solutions. Nanotechnology 17:4885–4894

    Article  CAS  Google Scholar 

  5. Liu Y, Liu X, Wang X (2010) Biomimetic synthesis of gelatin polypeptide-assisted noble-metal nanoparticles and their interaction study. Nanoscale Res Lett 6:22. doi:10.1007/s11671-010-9756-1

    Google Scholar 

  6. Rafey A, Shrivastav KBL, Iqbal SA, Khan Z (2011) Growth of Ag-nanoparticles using aspartic acid in aqueous solutions. J Colloid Interface Sci 534:190–195

    Article  Google Scholar 

  7. Bagwe RP, Khilar KC (2000) Effects of intermicellar exchange rate on the formation of silver nanoparticles in reverse microemulsions of AOT. Langmuir 16:905–910

    Article  CAS  Google Scholar 

  8. Jin RC, Cho YW, Markin CA, Kelly KL, Schatz GC, Zheng JG (2001) Photoinduced conversion of silver nanospheres to nanoprisms. Science 294:1901–1903

    Article  CAS  Google Scholar 

  9. Sau TK, Murphy CJ (2004) Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J Am Chem Soc 126:8648–8649

    Article  CAS  Google Scholar 

  10. Bakshi MS (2009) A simple method of superlattice formation: step-by-step evaluation of crystal growth of gold nanoparticles through seed growth method. Langmuir 25:12697–12705

    Article  CAS  Google Scholar 

  11. Shankar SS, Rai A, Ahmad A, Sastry M (2004) Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 275:496–502

    Article  CAS  Google Scholar 

  12. Xie J, Lee JY, Wang DIC, Ting YP (2007) Silver nanoplates: from biological to biomimetic synthesis. ACS Nano 1:429–439

    Article  CAS  Google Scholar 

  13. Raveendran P, Fu J, Wallen SL (2003) Completely “green” synthesis and stabilization of metal nanoparticles. J Am Chem Soc 125:13940–13941

    Article  CAS  Google Scholar 

  14. Khan Z, Bashir O, Hussain JI, Kumar S, Ahmad R (2012) Effects of ionic surfactants on the morphology of silver nanoparticles using Paan (Piper betel) leaf petiole extract. Colloids Surfs B: Biointerfaces 98:85–90

    Article  CAS  Google Scholar 

  15. Khan Z, Hussain JI, Hashmi AA (2012) Shape-directing role of cetyltrimethylammonium bromide in the green synthesis of Ag-nanoparticles using neem (Azadirachta indica) leaf extract. Colloids Surfs B: Biointerfaces 95:229–234

    Article  CAS  Google Scholar 

  16. Areias FM, Rego AC, Oliveira CR, Seabra RM (2001) Antioxidant effect of flavonoids after ascorbate/Fe2+-induced oxidative stress in cultured retinal cells. Biochem Pharmacol 62:111–118

    Article  CAS  Google Scholar 

  17. Khan Z, Al-Nowaiser FM (2011) Effect of poly(vinyl alcohol) on the size, shape, and rate of silver nanoparticles formation. J Dispers Sci Technol 32:1655–1660

    Article  CAS  Google Scholar 

  18. Al-Thabaiti SA, Al-Nowaiser FM, Obaid AY, Al-Youbi AO, Khan Z (2008) Formation and characterization of surfactant stabilized silver nanoparticles: a kinetic study. Colloids Surfs B: Biointerfaces 67:230–237

    Article  CAS  Google Scholar 

  19. Kimling J, Maier M, Okenve B, Kotaidis V, Ballot H, Plech A (2006) Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem B 210:15700–15707

    Google Scholar 

  20. Link S, El-Sayed MA (1999) Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B 103:8410–8426

    CAS  Google Scholar 

  21. Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110:7238–7248

    CAS  Google Scholar 

  22. Liu X, Atwater M, Wang J, Huo Q (2007) Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids Surfs B: Biointerfaces 58:3–7

    Article  CAS  Google Scholar 

  23. Sigmann SB, Wheeler DE (2004) Quantitative determination of citric and ascorbic acid in powdered drink mixes. J Chem Educ 81:1479–1481

    Article  CAS  Google Scholar 

  24. Scott WW, Furman NH (1922) Standard methods of chemical analysis; a manual of analytical methods and general reference for the analytical chemist and for the advanced student. Van Nostrand, New York

    Google Scholar 

  25. Esumi K, Hosoyo T, Yamahira A, Torigoe K (2000) Formation of gold and silver nanoparticles in aqueous solution of sugar-persubstituted poly(amidoamine) dendrimers. J Colloid Interface Sci 226:346–352

    Article  CAS  Google Scholar 

  26. Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102

    Article  CAS  Google Scholar 

  27. Henglein A (1993) Physicochemical properties of small metal particles in solution: “microelectrode” reactions, chemisorption, composite metal particles, and the atom-to-metal transition. J Phys Chem 97:5457–5471

    CAS  Google Scholar 

  28. Huang ZY, Mills G, Hajek B (1993) Spontaneous formation of silver particles in basic 2-propanol. J Phys Chem 97:11542–11550

    CAS  Google Scholar 

  29. Wiley B, Herricks T, Sun Y, Xia Y (2004) Polyol synthesis of silver nanoparticles: use of chloride and oxygen to promote the formation of single-crystal, truncated cubes and tetrahedrons. Nano Lett 4:1733–1739

    Article  CAS  Google Scholar 

  30. Shvalagin VV, Stroyuk AL, Kuchmii SY (2007) Photochemical synthesis of ZnO/Ag nanocomposites. J Nanopart Res 9:427–440

    Article  CAS  Google Scholar 

  31. Mucic RC, Storhoff JJ, Mirkin CA, Letsinger RL (1998) DNA-directed synthesis of binary nanoparticle network materials. J Am Chem Soc 120:12674–12675

    Article  CAS  Google Scholar 

  32. Mulvaney P, Henglein A (1990) Long-lived nonmetallic silver clusters in aqueous solution: a pulse radiolysis study of their formation. J Phys Chem 94:4182–4188

    CAS  Google Scholar 

  33. Linnert T, Mulvaney P, Henglein A, Weller H (1990) Long-lived nonmetallic silver clusters in aqueous solution: preparation and photolysis. J Am Chem Soc 112:4657–4664

    Article  CAS  Google Scholar 

  34. Ershov BG, Henglein A (1998) Reduction of Ag+ on polyacrylate chains in aqueous solution. J Phys Chem B 102:10663–10666

    CAS  Google Scholar 

  35. Shimizu K, Tsuzuki M, Kato K, Yokota S, Okumura K, Satsuma A (2007) Reductive activation of O2 with H2-reduced silver clusters as a key step in the H2-promoted selective catalytic reduction of NO with C3H8 over Ag/Al2O3. J Phys Chem C 111:950–959

    Article  CAS  Google Scholar 

  36. Pillai ZS, Kamat PV (2004) What factors control the size and shape of silver nanoparticles in the citrate ion reduction method? J Phys Chem B 108:945–951

    CAS  Google Scholar 

  37. Mostafavi M, Dey GR, François L, Belloni J (2002) Transient and stable silver clusters induced by radiolysis in methanol. J Phys Chem A 106:10184–10194

    CAS  Google Scholar 

  38. Belloni J (2006) Nucleation, growth and properties of nanoclusters studied by radiation chemistry: application to catalysis. Catal Today 113:141–156

    Article  CAS  Google Scholar 

  39. Bakshi MS (2010) Room temperature surfactant assisted crystal growth of silver nanoparticles to nanoribbons. J Nanosci Nanotechnol 10:1757–1765

    Article  CAS  Google Scholar 

  40. Menger FM, Bender ML (1966) The effect of charge-transfer complexation on the hydrolysis of some carboxylic acid derivatives. J Am Chem Soc 88:131–137

    Article  CAS  Google Scholar 

  41. de Araujo MA, Hodges HL (1982) Electron-transfer reactions of copper complexes. 2. Kinetic investigation of the oxidation of bis(1,10-phenanthroline)copper(I) by tris(acetylacetonato)cobalt(III) and (ethylenediaminetetraacetato)cobalt(III) in aqueous and micellar sodium dodecyl sulfate solution. Inorg Chem 21:3167–3172

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaheer Khan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hussain, S., Al-Thabaiti, S.A. & Khan, Z. Surfactant-assisted bio-conjugated synthesis of silver nanoparticles (AgNPs). Bioprocess Biosyst Eng 37, 1727–1735 (2014). https://doi.org/10.1007/s00449-014-1145-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-014-1145-1

Keywords

Navigation