Skip to main content
Log in

Molecular genetic analysis of five spike-related traits in wheat using RIL and immortalized F2 populations

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Kernel number per spike is one of the most important yield components of wheat. To map QTLs related to kernel number including spike length (SPL), spikelet number per spike (SPN), fertile spikelet number (FSPN), sterile spikelet number (SSPN) and compactness, and to characterize the inheritance modes of the QTLs and two-locus interactions, 136 recombinant inbred lines (RILs) derived from ‘Nanda2419’ x ‘Wangshuibai’ and an immortalized F2 population (IF2) generated by randomly permutated intermating of these RILs were investigated. QTL mapping made use of the previously constructed over 3300 cM linkage map of the RIL population. Three, five, two, two and six chromosome regions were identified, respectively, for their association with SPL, SPN, FSPN, SSPN, and compactness in at least two of the three environments examined. All compactness QTLs but one shared the respective intervals of QSpn.nau-5A and the SPL QTLs. Xcfd46Xwmc702 interval on chromosome 7D was related to all traits but SSPN and had consistently the largest effects. The fact that not all the compactness QTL intervals were related to both SPL and SPN indicates that compactness is regulated by different mechanisms. Interval coincidence between QTLs of SPL and SPN and between QTLs of FSPN and SSPN was minimal. For all the traits, favorable alleles exist in both parents. Inheritance modes from additiveness to overdominance of the QTLs were revealed and two-locus interactions were detected, implying that the traits studied are under complex genetic control. The results could contribute to wheat yield improvement and better use of Wangshuibai and Nanda2419 the two special germplasms in wheat breeding program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Araki E, Miura H, Sawada S (1999) Identification of genetic loci affecting amylose content and agronomic traits on chromosome 4A of wheat. Theor Appl Genet 98:977–984

    Article  CAS  Google Scholar 

  • Berke TG, Baenziger PS, Morris R (1992) Chromosomal location of wheat quantitative trait loci affecting agronomic performance of seven traits using reciprocal chromosome substitutions. Crop Sci 32:621–627

    Article  Google Scholar 

  • Börner A, Schumann E, Fürste A, Cöster H, Leithold B, Röder MS, Weber WE (2002) Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.) Theor Appl Genet 105:921–936

    Article  PubMed  Google Scholar 

  • Brancourt-Hulmel M, Doussinault G, Lecomte C, Bérard P, Le Buanec B, Trottet M (2003) Genetic improvement of agronomic traits of winter wheat cultivars released in France from 1946 to 1992. Crop Sci 43:37–45

    Article  Google Scholar 

  • Campbell BT, Baenziger PS, Gill KS, Eskridge KM, Budak H, Erayman M, Dweikat I, Yen Y (2003) Identification of QTLs and environmental interactions associated with agronomic traits on chromosome 3A of wheat. Crop Sci 43:1493–1505

    Article  CAS  Google Scholar 

  • Dilbirligi M, Erayman M, Campbell BT, Randhawa HS, Baenziger PS, Dweikat I, Gill KS (2006) High-density mapping and comparative analysis of agronomically important traits on wheat chromosome 3A. Genomics 88:74–87

    Article  PubMed  CAS  Google Scholar 

  • Edward CH, Ketala H, Smith EL (1976) Gene action of heading date, plant height and other characters in two winter wheat crosses. Crop Sci 16:275–277

    Article  Google Scholar 

  • Gill KS, Nanda GS, Gurdev Sinsh (1977) Inheritance of plant height, tiller number, ear length and number of spikelets in two spring winter crosses in wheat. Genet Agr 31:227–237

    Google Scholar 

  • Goldringer I, Brabant P, Gallaris A (1997) Estimation of additive and epistatic genetic variances for agronomic traits in a population of doubled-haploid lines of wheat. Heredity 79:60–71

    Article  Google Scholar 

  • Grafius JE (1978) Multiple characters and correlated response. Crop Sci 18:931–934

    Article  Google Scholar 

  • Groos C, Robert N, Bervas E, Charmet G (2003) Genetic analysis of grain protein-content, grain yield and thousand-kernal weight in bread wheat. Theor Appl Genet 106:1032–1040

    PubMed  CAS  Google Scholar 

  • Hua JP, Xing YZ, Xu CG, Sun XL, YU SB, Zhang QF (2002) Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance. Genetics 162:1885–1895

    Google Scholar 

  • Huang XQ, Kempf H, Ganal MW, Röder MS (2004) Advanced backcross QTL analysis in progenies derived from a cross between a German elite winter wheat variety and a synthetic wheat (Triticum aestivum L.). Theor Appl Genet 109:933–943

    Article  PubMed  CAS  Google Scholar 

  • Jantasuriyarat C, Vales MI, Watson CJW, Riera-Lizarazu O (2004) Identification and mapping of genetic loci affecting the free-threshing habit and spike compactness in wheat (Triticum aestivum L.). Theor Appl Genet 108:261–273

    Article  PubMed  CAS  Google Scholar 

  • Kato K, Miura H, S. Sawada S (1999) QTL mapping of genes controlling ear emergence time and plant height on chromosome 5A of wheat. Theor Appl Genet 98:472–477

    Article  CAS  Google Scholar 

  • Kato K, Miura H, Sawada S (2000) Mapping QTLs controlling grain yield and its components on chromosome 5A of wheat. Theor Appl Genet 101:1114–1121

    Article  CAS  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    PubMed  CAS  Google Scholar 

  • Langer RHM, Hanif M (1973) A study of floret development in wheat (Triticum aestivum L.). Ann Botany 37:743–751

    Google Scholar 

  • Law CN (1965) Biometrical analysis using chromosome substitutions within a species. In: Riley R, Lewis KR (eds) Chromosome manipulations in plant genetics. Suppl Heredity 20:59–85

  • Law CN (1966) The location of genetic factors controlling a quantitative character in wheat. Genetics 53:487–498

    CAS  PubMed  Google Scholar 

  • Law CN (1967) The location of genetic factors controlling a number of quantitative characters in wheat. Genetics 56:445–461

    CAS  PubMed  Google Scholar 

  • Ledent JF, Stoy V (1988) Yield of winter wheat, a comparison of genotype from 1910 to 1976. Cereal Res Comm 16:151–156

    Google Scholar 

  • Li JX, Yu SB, Xu CG, Tan YF, Gao YJ, Li XH, Zhang QF (2000) Analyzing quantitative trait loci for yield using a vegetatively replicated F2 population from a cross between the parents of an elite rice hybrid. Theor Appl Genet 101:248–254

    Article  CAS  Google Scholar 

  • Li WL, Nelson JC, Chu CY, Shi LH, Huang SH, Lin DJ (2002) Chromosomal locations and genetic relationships of tiller and spike characters in wheat. Euphytica 125:357–366

    Article  CAS  Google Scholar 

  • Li ZK, Luo LJ, Mei HW, Wang DL, Shu QY, Tabien R, Zhong DB, Ying CS, Stansel JW, Khush GS, Paterson AH (2001) Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I. Biomass and grain yield. Genetics 158:1737–1753

    PubMed  CAS  Google Scholar 

  • Liao CY, Wu P, Hu B, Yi KK (2001) Effects of genetic background and environment on QTLs and epistasis for rice (Oryza sativa L.) panicle number. Theor Appl Genet 103:104–111

    Article  CAS  Google Scholar 

  • Lin F, Kong ZX, Zhu HL, Xue SL, Wu JZ, Tian DG, Wei JB, Zhang CQ, Ma ZQ (2004) Mapping QTL associated with resistance to Fusarium head blight in the Nanda2419 × Wangshuibai population. I. Type II resistance. Theor Appl Genet 109:1504–1511

    Article  PubMed  CAS  Google Scholar 

  • Lin F, Xue SL, Zhang ZZ, Zhang CQ, Kong ZX, Yao GQ, Tian DG, Zhu HL, Li CJ, Cao Y, Wei JB, Luo QY, Ma ZQ (2006) Mapping QTL associated with resistance to Fusarium head blight in the Nanda2419 × Wangshuibai population. II: Type I resistance. Theor Appl Genet 112:528–535

    Article  PubMed  CAS  Google Scholar 

  • Liu SB, Zhou RH, Dong YC, Li P, Jia JZ (2006) Development, utilization of introgression lines using a synthetic wheat as donor. Theor Appl Genet 112:1360–1373

    Article  PubMed  CAS  Google Scholar 

  • Manly KF, Cudmore RH Jr, Meer JM (2001) Map Manager QTX, cross-platform software for genetic mapping. Mamm Genome 12:930–932

    Article  PubMed  CAS  Google Scholar 

  • Marza F, Bai GH, Carver BF, Zhou WC (2006) Quantitative trait loci for yield and related traits in the wheat population Ning7840 × Clark. Theor Appl Genet 112:688–698

    Article  PubMed  CAS  Google Scholar 

  • McCartney CA, Somers DJ, Humphreys DG, Lukow O, Ames N, Noll J, Cloutier S, McCallum BD (2005) Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL4452 × ‘AC Domain’. Genome 48:870–883

    PubMed  CAS  Google Scholar 

  • Mckendry AL, Mcvetty PBE, Evans LE (1988) Inheritance of grain protein concentration, grain yield, and related traits in spring wheat (Triticum aestivum L.). Genome 30:857–864

    Google Scholar 

  • Miura H, Parker BB, Snape JW (1992) The location of major genes and associated quantitative trait loci on chromosome arm 5BL of wheat. Theor Appl Genet 85:197–204

    Article  Google Scholar 

  • Nanda GS, Hazarika GN, Gill KS (1981) Inheritance of heading date, plant height, ear length and spikelets per spike in an intervarietal cross of wheat. Theor Appl Genet 60:167–171

    Article  Google Scholar 

  • Narasimhamoorthy B, Gill BS, Fritz AK, Nelson JC, Brown-Guedira GL (2006) Advanced backcross QTL analysis of a hard winter wheat × synthetic wheat population. Theor Appl Genet 112:787–796

    Article  PubMed  CAS  Google Scholar 

  • Paillard S Schnurbusch T, Winzeler M, Messmer M, Sourdille P, Abderhalden O, Keller B, Schachermayr G (2003) An integrative genetic linkage map of winter wheat (Triticum aestivum L.). Theor Appl Genet 107:1235–1242

    Article  CAS  Google Scholar 

  • Perry MW, d’Antuono MF (1989) Yield improvement and associated characteristics of some Australian spring wheat cultivars introduced between 1860 and 1982. Aust J Agric Res 40:457–472

    Google Scholar 

  • Quarrie SA, Steed A, Calestani C, Semikhidskii A, Lebreton C, Chinoy C, Steele N (2005) A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring × SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor Appl Genet 110:865–880

    Article  PubMed  CAS  Google Scholar 

  • Sayre KD, Rajaram S, Fischer RA (1997) Yield potential progress in short bread wheat in northern Mexico. Crop Sci 37:36–42

    Article  Google Scholar 

  • Shah MM, Gill KS, Baenziger PS, Yen Y, Kaeppler SM, Ariyarathne HM (1999) Molecular mapping of loci for agronomic traits on chromosome 3A of bread wheat. Crop Sci 39:1728–1732

    Article  CAS  Google Scholar 

  • Sharma SN, Sain RS, Sharma RK (2003) Genetics of spike length in durum wheat. Euphytica 130:155–161

    Article  CAS  Google Scholar 

  • Slafer GA, Andrade FH (1989) Genetic improvement in bread wheat (Triticum aestivum) yield in Argentina. Field Crops Res 21:289–296

    Article  Google Scholar 

  • Snape JW, Law CN, Parker BB, Worland AJ (1985) Genetical analysis of chromosome 5A of wheat and its influence on important agronomic characters. Theor Appl Genet 71:518–526

    Article  Google Scholar 

  • Sourdille P, Cadalen T, Guyomarc’h H, Snape JW, Perretant MR, Charmet G, Boeuf C, Bernard S, Bernard M (2003) An update of the Courtot × Chinese Spring intervarietal molecular marker linkage map for the QTL detection of agronomic traits in wheat. Theor Appl Genet 106:530–538

    PubMed  CAS  Google Scholar 

  • Sourdille P, Tixier MH, Charmet G, Gay G, Cadalen T, Bernard S, Bernard M (2000) Location of genes involved in ear compactness in wheat (Triticum aestivum) by means of molecular markers. Mol Breed 6:247–255

    Article  CAS  Google Scholar 

  • Suenaga K, Khairallah M, William HM, Hoisington DA (2005) A new intervarietal linkage map and its application for quantitative trait locus analysis of “gigas” features in bread wheat. Genome 48:65–75

    Article  PubMed  CAS  Google Scholar 

  • Walton PD (1972) Factor analysis of yield in spring wheat (Triticum aestivum L.). Crop Sci 12:731–733

    Article  Google Scholar 

  • Worland AJ, Korzun V, Röder MS, Ganal MW, Law CN (1998) Genetic analysis of the dwarfing gene Rht8 in wheat. Part II. The distribution and adaptive significance of allelic variants at the Rht8 locus of wheat as revealed by microsatellite screening. Theor Appl Genet 96:1110–1120

    Article  CAS  Google Scholar 

  • Yu SB, Li XJ, Xu CG, tan YF, Gao YJ, Li XH, Zhang QF, Maroof MAS (1997) Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA 94:9226–9231

    Article  PubMed  CAS  Google Scholar 

  • Zou F, Gelfond JAL, Airey DC, Lu L, Manly KF, Williams RW, Threadgill DW (2005) Quantitative trait locus analysis using recombinant inbred intercross (RIX): theoretical and empirical considerations. Genetics 170:1299–1311

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This project was partially supported by ‘973’ program (2006CB101702), NFSC program (30430440, 30025030), and ‘863’ program (2003AA207100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengqiang Ma.

Additional information

Communicated by R. Hagemann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, Z., Zhao, D., Zhang, C. et al. Molecular genetic analysis of five spike-related traits in wheat using RIL and immortalized F2 populations. Mol Genet Genomics 277, 31–42 (2007). https://doi.org/10.1007/s00438-006-0166-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-006-0166-0

Keywords

Navigation