Skip to main content

Advertisement

Log in

Plant breeding for harmony between sustainable agriculture, the environment, and global food security: an era of genomics‐assisted breeding

  • Review
  • Published:
Planta Aims and scope Submit manuscript

Main conclusion

Genomics-assisted breeding represents a crucial frontier in enhancing the balance between sustainable agriculture, environmental preservation, and global food security. Its precision and efficiency hold the promise of developing resilient crops, reducing resource utilization, and safeguarding biodiversity, ultimately fostering a more sustainable and secure food production system.

Abstract

Agriculture has been seriously threatened over the last 40 years by climate changes that menace global nutrition and food security. Changes in environmental factors like drought, salt concentration, heavy rainfalls, and extremely low or high temperatures can have a detrimental effects on plant development, growth, and yield. Extreme poverty and increasing food demand necessitate the need to break the existing production barriers in several crops. The first decade of twenty-first century marks the rapid development in the discovery of new plant breeding technologies. In contrast, in the second decade, the focus turned to extracting information from massive genomic frameworks, speculating gene-to-phenotype associations, and producing resilient crops. In this review, we will encompass the causes, effects of abiotic stresses and how they can be addressed using plant breeding technologies. Both conventional and modern breeding technologies will be highlighted. Moreover, the challenges like the commercialization of biotechnological products faced by proponents and developers will also be accentuated. The crux of this review is to mention the available breeding technologies that can deliver crops with high nutrition and climate resilience for sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  • Abdel Latef AA, Tran L-SP (2016) Impacts of priming with silicon on the growth and tolerance of maize plants to alkaline stress. Front Plant Sci 7

  • Abdul Rahman NSN, Abdul Hamid NW, Nadarajah K (2021) Effects of abiotic stress on soil microbiome. Int J Mol Sci 22:9036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abdulmajeed AM, Derby SR, Strickland SK, Qaderi MM (2017) Interactive effects of temperature and UVB radiation on methane emissions from different organs of pea plants grown in hydroponic system. J Photochem Photobiol B Biol 166:193–201

    Article  CAS  Google Scholar 

  • Abeysingha DN, Ozga JA, Strydhorst S et al (2021) The effect of auxins on amelioration of heat stress-induced wheat (Triticum aestivum L.) grain loss. J Agron Crop Sci 207:970–983

    Article  CAS  Google Scholar 

  • Abid M, Tian Z, Ata-Ul-Karim ST, et al (2016) Nitrogen Nutrition Improves the Potential of Wheat (Triticum aestivum L.) to Alleviate the Effects of Drought Stress during Vegetative Growth Periods. Front Plant Sci 7

  • Abobatta WF (2020) Plant responses and tolerance to combined salt and drought stress. Salt and drought stress tolerance in plants: signaling networks and adaptive mechanisms. Springer, Cham, pp 17–52

    Chapter  Google Scholar 

  • Acquaah G (2015) Conventional plant breeding principles and techniques. Advances in plant breeding strategies: breeding, biotechnology and molecular tools. Springer, Cham, pp 115–158

    Chapter  Google Scholar 

  • Afridi MS, Ali S, Salam A et al (2022) Plant microbiome engineering: hopes or hypes. Biology (basel) 11:1782

    CAS  PubMed  Google Scholar 

  • Ahanger MA, Agarwal RM, Tomar NS, Shrivastava M (2015) Potassium induces positive changes in nitrogen metabolism and antioxidant system of oat (Avena sativa L cultivar Kent). J Plant Interact 10:211–223. https://doi.org/10.1080/17429145.2015.1056260

    Article  Google Scholar 

  • Ahmad P, Prasad MNV (2011) Abiotic stress responses in plants: metabolism, productivity and sustainability. Springer Science & Business Media, New York

    Google Scholar 

  • Ahmad I, Akhtar MJ, Zahir ZA, Jamil A (2012) Effect of cadmium on seed germination and seedling growth of four wheat (Triticum aestivum L.) cultivars. Pak J Bot 44:1569–1574

    Google Scholar 

  • Ahmad A, Ghouri MZ, Munawar N, et al (2021) Regulatory, ethical, and social aspects of CRISPR crops. Cris Crop Futur Food Secur 261–287

  • Ahmed M, Khan S, Irfan M et al (2018) Effect of phosphorus on root signaling of wheat under different water regimes. In: Fahad S, Basir A, Adnan M (eds) Global wheat production. IntechOpen, Rijeka

    Google Scholar 

  • Aleksoski J (2018) The effect of backcross method in tobacco breeding. J Agric Plant Sci 16:9–19

    Google Scholar 

  • Alidoust D, Isoda A (2013) Effect of γFe2O3 nanoparticles on photosynthetic characteristic of soybean (Glycine max (L.) Merr.): foliar spray versus soil amendment. Acta Physiol Plant 35:3365–3375. https://doi.org/10.1007/s11738-013-1369-8

    Article  CAS  Google Scholar 

  • Al-Khayri JM, Jain SM, Johnson DV (2016) Advances in plant breeding strategies: agronomic, abiotic and biotic stress traits. Spinger, Cham

    Book  Google Scholar 

  • Andersson M, Turesson H, Olsson N et al (2018) Genome editing in potato via CRISPR-Cas9 ribonucleoprotein delivery. Physiol Plant 164:378–384

    Article  CAS  PubMed  Google Scholar 

  • Anwar A, Kim J-K (2020) Transgenic breeding approaches for improving abiotic stress tolerance: recent progress and future perspectives. Int J Mol Sci 21:2695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashraf M, Hafeez M (2004) Thermotolerance of pearl millet and maize at early growth stages: growth and nutrient relations. Biol Plant 48:81–86

    Article  CAS  Google Scholar 

  • Badu-Apraku B, Talabi AO, Fakorede MAB et al (2019) Yield gains and associated changes in an early yellow bi-parental maize population following genomic selection for Striga resistance and drought tolerance. BMC Plant Biol 19:1–17

    Article  Google Scholar 

  • Bahram M, Hildebrand F, Forslund SK et al (2018) Structure and function of the global topsoil microbiome. Nature 560:233–237

    Article  CAS  PubMed  Google Scholar 

  • Baía DC, Olivares FL, Zandonadi DB et al (2020) Humic acids trigger the weak acids stress response in maize seedlings. Chem Biol Technol Agric 7:1–13

    Article  Google Scholar 

  • Barakat MN, Saleh MS, Al-Doss AA et al (2015) Mapping of QTLs associated with abscisic acid and water stress in wheat. Biol Plant 59:291–297

    Article  CAS  Google Scholar 

  • Bari VK, Nassar JA, Kheredin SM et al (2019) CRISPR/Cas9-mediated mutagenesis of CAROTENOID CLEAVAGE DIOXYGENASE 8 in tomato provides resistance against the parasitic weed Phelipanche aegyptiaca. Sci Rep 9:11438

    Article  PubMed  PubMed Central  Google Scholar 

  • Bartholomaeus A, Parrott W, Bondy G, Walker K (2013) The use of whole food animal studies in the safety assessment of genetically modified crops: Limitations and recommendations. Crit Rev Toxicol 43:1–24. https://doi.org/10.3109/10408444.2013.842955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bashir K, Matsui A, Rasheed S, Seki M (2019) Recent advances in the characterization of plant transcriptomes in response to drought, salinity, heat, and cold stress. F 1000:

  • Battaglene A (2023) Consumer and regulatory response to climate change-new plant breeding techniques. In: BIO Web of Conferences. EDP Sciences, p 3001

  • Beche E, Gillman JD, Song Q et al (2021) Genomic prediction using training population design in interspecific soybean populations. Mol Breed 41:1–15

    Article  Google Scholar 

  • Begna T (2021) Conventional breeding methods widely used to improve self-pollinated crops

  • Beyene Y, Semagn K, Mugo S et al (2015) Genetic gains in grain yield through genomic selection in eight bi-parental maize populations under drought stress. Crop Sci 55:154–163

    Article  Google Scholar 

  • Bhandari A, Bartholomé J, Cao-Hamadoun T-V et al (2019) Selection of trait-specific markers and multi-environment models improve genomic predictive ability in rice. PLoS ONE 14:e0208871

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhullar NK, Zhang Z, Wicker T, Keller B (2010) Wheat gene bank accessions as a source of new alleles of the powdery mildew resistance gene Pm3: a large scale allele mining project. BMC Plant Biol 10:1–13

    Article  Google Scholar 

  • Biswas S, Zhang D, Shi J (2021) CRISPR/Cas systems: opportunities and challenges for crop breeding. Plant Cell Rep 40:979–998. https://doi.org/10.1007/s00299-021-02708-2

    Article  CAS  PubMed  Google Scholar 

  • Bo W, Zhaohui Z, Huanhuan Z et al (2019) Targeted mutagenesis of NAC transcription factor gene, OsNAC041, leading to salt sensitivity in rice. Rice Sci 26:98–108. https://doi.org/10.1016/j.rsci.2018.12.005

    Article  Google Scholar 

  • Boostani HR, Najafi-Ghiri M, Mirsoleimani A (2019) The effect of biochars application on reducing the toxic effects of nickel and growth indices of spinach (Spinacia oleracea L.) in a calcareous soil. Environ Sci Pollut Res 26:1751–1760

    Article  CAS  Google Scholar 

  • Botta A (2012) Enhancing plant tolerance to temperature stress with amino acids: an approach to their mode of action. I World Congress on the Use of Biostimulants in Agriculture 1009:29–35

    Google Scholar 

  • Bouzroud S, Gasparini K, Hu G et al (2020) Down regulation and loss of auxin response factor 4 function using CRISPR/Cas9 alters plant growth, stomatal function and improves tomato tolerance to salinity and osmotic stress. Genes (basel) 11:10. https://doi.org/10.3390/genes11030272

    Article  CAS  Google Scholar 

  • Breseghello F, Coelho ASG (2013) Traditional and modern plant breeding methods with examples in rice (Oryza sativa L.). J Agric Food Chem 61:8277–8286

    Article  CAS  PubMed  Google Scholar 

  • Brodie JF, Aslan CE, Rogers HS et al (2014) Secondary extinctions of biodiversity. Trends Ecol Evol 29:664–672. https://doi.org/10.1016/j.tree.2014.09.012

    Article  PubMed  Google Scholar 

  • Bulgari R, Franzoni G, Ferrante A (2019) Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy 9:306

    Article  CAS  Google Scholar 

  • Burgueño J, de los Campos G, Weigel K, Crossa J (2012) Genomic prediction of breeding values when modeling genotype× environment interaction using pedigree and dense molecular markers. Crop Sci 52:707–719

    Article  Google Scholar 

  • Butler NM, Atkins PA, Voytas DF, Douches DS (2015) Generation and inheritance of targeted mutations in potato (Solanum tuberosum L.) using the CRISPR/Cas system. PLoS ONE 10:e0144591

    Article  PubMed  PubMed Central  Google Scholar 

  • Calanca PP (2017) Effects of abiotic stress in crop production. Quantification of climate variability, adaptation and mitigation for agricultural sustainability. Springer, Cham, pp 165–180

    Chapter  Google Scholar 

  • Campobenedetto C, Mannino G, Agliassa C et al (2020) Transcriptome analyses and antioxidant activity profiling reveal the role of a lignin-derived biostimulant seed treatment in enhancing heat stress tolerance in soybean. Plants 9:1308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carvalho LC, Coito JL, Gonçalves EF et al (2016) Differential physiological response of the grapevine varieties Touriga Nacional and Trincadeira to combined heat, drought and light stresses. Plant Biol 18:101–111

    Article  CAS  PubMed  Google Scholar 

  • Ceccarelli S, Grando S, Maatougui M et al (2010) Plant breeding and climate changes. J Agric Sci 148:627–637

    Article  Google Scholar 

  • Char SN, Neelakandan AK, Nahampun H et al (2017) An Agrobacterium-delivered CRISPR/Cas9 system for high-frequency targeted mutagenesis in maize. Plant Biotechnol J 15:257–268

    Article  CAS  PubMed  Google Scholar 

  • Chawade A, van Ham J, Blomquist H et al (2019) High-throughput field-phenotyping tools for plant breeding and precision agriculture. Agronomy 9:258

    Article  CAS  Google Scholar 

  • Chen X, Qiu L, Guo H et al (2017) Spermidine induces physiological and biochemical changes in southern highbush blueberry under drought stress. Brazilian J Bot 40:841–851

    Article  Google Scholar 

  • Chen H, Zhang Q, Cai H et al (2018) H2O2 mediates nitrate-induced iron chlorosis by regulating iron homeostasis in rice. Plant Cell Environ 41:767–781

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Zhu X, Liu X et al (2021a) Knockout of auxin response factor SlARF4 improves tomato resistance to water deficit. Int J Mol Sci. https://doi.org/10.3390/ijms22073347

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen S, Zhang N, Zhou G et al (2021b) Knockout of the entire family of AITR genes in Arabidopsis leads to enhanced drought and salinity tolerance without fitness costs. BMC Plant Biol 21:137. https://doi.org/10.1186/s12870-021-02907-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chinnusamy V, Zhu J, Zhu J-K (2007) Cold stress regulation of gene expression in plants. Trends Plant Sci 12:444–451

    Article  CAS  PubMed  Google Scholar 

  • Cho SW, Kim S, Kim Y et al (2014) Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res 24:132–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christoph IB, Bruhn M, Roosen J (2008) Knowledge, attitudes towards and acceptability of genetic modification in Germany. Appetite 51:58–68. https://doi.org/10.1016/j.appet.2007.12.001

    Article  PubMed  Google Scholar 

  • Chu H, Sun B, Zhou J, et al (2023) Molecular marker assisted breeding of a new Japonica hybrid rice ‘Shenyou28’with good quality and disease resistance. Mol Plant Breed 14

  • Cramer GR, Urano K, Delrot S et al (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11:1–14

    Article  Google Scholar 

  • Cruz-Cruz CA, González-Arnao MT, Engelmann F (2013) Biotechnology and conservation of plant biodiversity. Resources 2:73–95

    Article  Google Scholar 

  • Csiszár J, Horváth E, Váry Z et al (2014) Glutathione transferase supergene family in tomato: salt stress-regulated expression of representative genes from distinct GST classes in plants primed with salicylic acid. Plant Physiol Biochem 78:15–26

    Article  PubMed  Google Scholar 

  • Das G, Patra JK, Baek K-H (2017) Insight into MAS: a molecular tool for development of stress resistant and quality of rice through gene stacking. Front Plant Sci 8:985

    Article  PubMed  PubMed Central  Google Scholar 

  • de Alcântara JF, dos Santos RG, Baio FHR et al (2023) High-throughput phenotyping as an auxiliary tool in the selection of corn hybrids for agronomic traits. Rev Ceres 70:106–113

    Article  Google Scholar 

  • Diaz S, Ariza-Suarez D, Ramdeen R et al (2021) Genetic architecture and genomic prediction of cooking time in common bean (Phaseolus vulgaris L.). Front Plant Sci 11:622213

    Article  PubMed  PubMed Central  Google Scholar 

  • Ding Y, Guohua X (2011) Low magnesium with high potassium supply changes sugar partitioning and root growth pattern prior to visible magnesium deficiency in leaves of rice (Oryza sativa L.). Am J Plant Sci 2:601–608

    Article  CAS  Google Scholar 

  • Ding F, Jin S, Hong N et al (2008) Vitrification-cryopreservation, an efficient method for eliminating Candidatus Liberobacter asiaticus, the citrus Huanglongbing pathogen, from in vitro adult shoot tips. Plant Cell Rep 27:241–250. https://doi.org/10.1007/s00299-007-0467-8

    Article  CAS  PubMed  Google Scholar 

  • Ding X, Jiang Y, Hao T et al (2016) Effects of heat shock on photosynthetic properties, antioxidant enzyme activity, and downy mildew of cucumber (Cucumis sativus L.). PLoS ONE 11:e0152429

    Article  PubMed  PubMed Central  Google Scholar 

  • Ding Y, Shi Y, Yang S (2019) Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants. New Phytol 222:1690–1704

    Article  PubMed  Google Scholar 

  • Dresler S, Hawrylak-Nowak B, Kováčik J et al (2019) Allantoin attenuates cadmium-induced toxicity in cucumber plants. Ecotoxicol Environ Saf 170:120–126

    Article  CAS  PubMed  Google Scholar 

  • Dresselhaus T, Hückelhoven R (2018) Biotic and abiotic stress responses in crop plants. Agronomy 8:267

    Article  CAS  Google Scholar 

  • Duangjit J, Causse M, Sauvage C (2016) Efficiency of genomic selection for tomato fruit quality. Mol Breed 36:1–16

    Article  CAS  Google Scholar 

  • Eckerstorfer MF, Engelhard M, Heissenberger A et al (2019) Plants developed by new genetic modification techniques-comparison of existing regulatory frameworks in the EU and Non-EU Countries. Front Bioeng Biotechnol 7:26. https://doi.org/10.3389/fbioe.2019.00026

    Article  PubMed  PubMed Central  Google Scholar 

  • Engelmann F (2011) Use of biotechnologies for the conservation of plant biodiversity. Vitr Cell Dev Biol - Plant 47:5–16. https://doi.org/10.1007/s11627-010-9327-2

    Article  Google Scholar 

  • Fahad S, Bajwa AA, Nazir U, et al (2017) Crop production under drought and heat stress: plant responses and management options. Front Plant Sci 1147

  • Faseela P, Puthur JT (2018) The imprints of the high light and UV-B stresses in Oryza sativa L. ‘Kanchana’seedlings are differentially modulated. J Photochem Photobiol B Biol 178:551–559

    Article  CAS  Google Scholar 

  • Finucane ML, Slovic P, Mertz CK, et al (2013) Gender, Race and Perceived Risk: The ‘White-Male’Effect. In: The Feeling of Risk. Routledge, pp 125–139

  • Francini A, Sebastiani L (2019) Abiotic stress effects on performance of horticultural crops. Horticulturae 5:67

    Article  Google Scholar 

  • Frewer LJ, Howard C, Shepherd R (1996) Effective communication about genetic engineering and food. Br Food J 98:48–52

    Article  Google Scholar 

  • Friedman M, Rasooly R (2013) Review of the inhibition of biological activities of food-related selected toxins by natural compounds. Toxins (basel) 5:743–775

    Article  CAS  PubMed  Google Scholar 

  • Fritz C, Palacios-Rojas N, Feil R, Stitt M (2006) Regulation of secondary metabolism by the carbon–nitrogen status in tobacco: nitrate inhibits large sectors of phenylpropanoid metabolism. Plant J 46:533–548

    Article  CAS  PubMed  Google Scholar 

  • Gahan J, Schmalenberger A (2014) The role of bacteria and mycorrhiza in plant sulfur supply. Front Plant Sci 5:723

    Article  PubMed  PubMed Central  Google Scholar 

  • Ganiere P, Chern WS, Hahn D (2006) A continuum of consumer attitudes toward genetically modified foods in the United States. J Agric Resour Econ 129–149

  • García AC, Santos LA, Izquierdo FG et al (2014) Potentialities of vermicompost humic acids to alleviate water stress in rice plants (Oryza sativa L.). J Geochemical Explor 136:48–54

    Article  Google Scholar 

  • Gepstein S, Glick BR (2013) Strategies to ameliorate abiotic stress-induced plant senescence. Plant Mol Biol 82:623–633

    Article  CAS  PubMed  Google Scholar 

  • Ghadirnezhad Shiade SR, Fathi A, Taghavi Ghasemkheili F et al (2023) Plants’ responses under drought stress conditions: Effects of strategic management approaches—A review. J Plant Nutr 46:2198–2230

    Article  CAS  Google Scholar 

  • Ghosh S, Dey G (2022) Biotic and abiotic stress tolerance through CRISPR-Cas mediated genome editing. J Plant Biochem Biotechnol 31:227–238. https://doi.org/10.1007/s13562-021-00746-1

    Article  CAS  Google Scholar 

  • Gianola D, Fernando RL, Stella A (2006) Genomic-assisted prediction of genetic value with semiparametric procedures. Genetics 173:1761–1776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930. https://doi.org/10.1016/j.plaphy.2010.08.016

    Article  CAS  PubMed  Google Scholar 

  • Govind G, Seiler C, Wobus U, Sreenivasulu N (2011) Importance of ABA homeostasis under terminal drought stress in regulating grain filling events. Plant Signal Behav 6:1228–1231. https://doi.org/10.4161/psb.6.8.16254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo T, Chen Y, Zhang Y, Jin Y (2006) Alleviation of Al toxicity in barley by addition of calcium. Agric Sci China 5:828–833. https://doi.org/10.1016/S1671-2927(06)60131-4

    Article  CAS  Google Scholar 

  • Gupta K, Sengupta A, Chakraborty M, Gupta B (2016) Hydrogen peroxide and polyamines act as double edged swords in plant abiotic stress responses. Front Plant Sci 7:1343

    Article  PubMed  PubMed Central  Google Scholar 

  • Gurmani AR, Bano A, Ullah N et al (2013) Exogenous abscisic acid (ABA) and silicon (Si) promote salinity tolerance by reducing sodium (Na+) transport and bypass flow in rice (’Oryza sativa’ indica). Aust J Crop Sci 7:1219–1226

    Google Scholar 

  • Gururani MA, Venkatesh J, Tran LSP (2015) Regulation of photosynthesis during abiotic stress-induced photoinhibition. Mol Plant 8:1304–1320

    Article  CAS  PubMed  Google Scholar 

  • Habibi G (2012) Exogenous salicylic acid alleviates oxidative damage of barley plants under drought stress. Acta Biol Szeged 56:57–63

    Google Scholar 

  • Habier D, Fernando RL, Dekkers JCM (2009) Genomic selection using low-density marker panels. Genetics 182:343–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haile TA, Heidecker T, Wright D et al (2020) Genomic selection for lentil breeding: Empirical evidence. Plant Genome 13:e20002

    Article  CAS  PubMed  Google Scholar 

  • Han Q-H, Huang B, Ding C-B et al (2017) Effects of melatonin on anti-oxidative systems and photosystem II in cold-stressed rice seedlings. Front Plant Sci 8:785

    Article  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Hossain MA, Fujita M (2011) Selenium-induced up-regulation of the antioxidant defense and methylglyoxal detoxification system reduces salinity-induced damage in rapeseed seedlings. Biol Trace Elem Res 143:1704–1721

    Article  CAS  PubMed  Google Scholar 

  • Hatfield JL, Prueger JH (2015) Temperature extremes: effect on plant growth and development. Weather Clim Extrem 10:4–10

    Article  Google Scholar 

  • He T, Li C (2020) Harness the power of genomic selection and the potential of germplasm in crop breeding for global food security in the era with rapid climate change. Crop J 8:688–700

    Article  Google Scholar 

  • He M, He C-Q, Ding N-Z (2018) Abiotic stresses: general defenses of land plants and chances for engineering multistress tolerance. Front Plant Sci 9:1771

    Article  PubMed  PubMed Central  Google Scholar 

  • Heslot N, Jannink JL, Sorrells ME (2015) Perspectives for genomic selection applications and research in plants. Crop Sci 55:1–12. https://doi.org/10.2135/cropsci2014.03.0249

    Article  Google Scholar 

  • Huang X, Shi H, Hu Z et al (2017) ABA is involved in regulation of cold stress response in bermudagrass. Front Plant Sci 8:1613

    Article  PubMed  PubMed Central  Google Scholar 

  • Hwang S-G, Chen H-C, Huang W-Y et al (2010) Ectopic expression of rice OsNCED3 in Arabidopsis increases ABA level and alters leaf morphology. Plant Sci 178:12–22. https://doi.org/10.1016/j.plantsci.2009.09.014

    Article  CAS  Google Scholar 

  • Ilyas N, Gull R, Mazhar R et al (2017) Influence of salicylic acid and jasmonic acid on wheat under drought stress. Commun Soil Sci Plant Anal 48:2715–2723

    CAS  Google Scholar 

  • ISTA (2018) International Rules for Seed Testing 2018. ISTA Bassersdorf, Switz

  • Jacobs TB, LaFayette PR, Schmitz RJ, Parrott WA (2015) Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnol 15:1–10

    Article  CAS  Google Scholar 

  • Jacomassi LM, de Oliveira VJ, Oliveira MP et al (2022) A seaweed extract-based biostimulant mitigates drought stress in sugarcane. Front Plant Sci. https://doi.org/10.3389/fpls.2022.865291

    Article  PubMed  PubMed Central  Google Scholar 

  • Jan HU, Abbadi A, Lücke S et al (2016) Genomic prediction of testcross performance in canola (Brassica napus). PLoS ONE 11:e0147769

    Article  PubMed  PubMed Central  Google Scholar 

  • Jayakumar M, Surendran U, Manickasundaram P (2014) Drip fertigation effects on yield, nutrient uptake and soil fertility of Bt Cotton in semi arid tropics. Int J Plant Prod 8:375–390

    Google Scholar 

  • Jiang F, Doudna JA (2017) CRISPR–Cas9 structures and mechanisms. Annu Rev Biophys 46:505–529

    Article  CAS  PubMed  Google Scholar 

  • Jin S, Li W, Naab FZ et al (2023) Consumer attitudes toward novel agrifood technologies: a critical review on genetic modification and synthetic biology. Present knowledge in food safety. Springer, Cham, pp 1004–1014

    Chapter  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I et al (2012) A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science (80-) 337:816–821

    Article  CAS  Google Scholar 

  • Joshi BK (2017) Plant breeding in Nepal: Past, present and future. J Agric for Univ 1:1–33

    Google Scholar 

  • Jurkiewicz A, Zagórski J, Bujak F, et al (2014) Emotional attitudes of young people completing secondary schools towards genetic modification of organisms (GMO) and genetically modified foods (GMF). Ann Agric Environ Med 21:

  • Kabata-Pendias A (2000) Trace elements in soils and plants. CRC Press, New York

    Book  Google Scholar 

  • Kader AA (2002) Postharvest technology of horticultural crops. University of California Agriculture and Natural Resources

  • Kalayu G (2019) Phosphate solubilizing microorganisms: promising approach as biofertilizers. Int J Agron 2019:1–7

    Article  Google Scholar 

  • Kalloo G, Bergh BO (2012) Genetic improvement of vegetable crops. Newnes, New York

    Google Scholar 

  • Kaur N, Alok A, Kaur N et al (2018) CRISPR/Cas9-mediated efficient editing in phytoene desaturase (PDS) demonstrates precise manipulation in banana cv. Rasthali Genome Funct Integr Genomics 18:89–99

    Article  CAS  PubMed  Google Scholar 

  • Khan MIR, Asgher M, Khan NA (2014) Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycinebetaine and ethylene in mungbean (Vigna radiata L.). Plant Physiol Biochem 80:67–74

    Article  CAS  PubMed  Google Scholar 

  • Khan MA, Asaf S, Khan AL et al (2020) Extending thermotolerance to tomato seedlings by inoculation with SA1 isolate of Bacillus cereus and comparison with exogenous humic acid application. PLoS ONE 15:e0232228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kibra MG (2008) Effects of mercury on some growth parameters of rice (Oryza sativa L.). Soil Environ 27:23–28

    Google Scholar 

  • Kim S-T, Choi M, Bae S-J, Kim J-S (2021) The functional association of ACQOS/VICTR with salt stress resistance in Arabidopsis thaliana was confirmed by CRISPR-mediated mutagenesis. Int J Mol Sci. https://doi.org/10.3390/ijms222111389

    Article  PubMed  PubMed Central  Google Scholar 

  • Kimenju SC, De Groote H (2008) Consumer willingness to pay for genetically modified food in Kenya. Agric Econ 38:35–46

    Article  Google Scholar 

  • Klap C, Yeshayahou E, Bolger AM et al (2017) Tomato facultative parthenocarpy results from Sl AGAMOUS-LIKE 6 loss of function. Plant Biotechnol J 15:634–647

    Article  CAS  PubMed  Google Scholar 

  • Kopecká R, Kameniarová M, Černý M et al (2023) Abiotic stress in crop production. Int J Mol Sci 24:6603

    Article  PubMed  PubMed Central  Google Scholar 

  • Krause GH, Grube E, Koroleva OY et al (2004) Do mature shade leaves of tropical tree seedlings acclimate to high sunlight and UV radiation? Funct Plant Biol 31:743–756

    Article  PubMed  Google Scholar 

  • Kumar G, Bajpai R, Sarkar A et al (2019a) Identification, characterization and expression profiles of Fusarium udum stress-responsive WRKY transcription factors in Cajanus cajan under the influence of NaCl stress and Pseudomonas fluorescens OKC. Sci Rep 9:14344

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Kirk C, Deng CH et al (2019b) Marker-trait associations and genomic predictions of interspecific pear (Pyrus) fruit characteristics. Sci Rep 9:9072

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar K, Gambhir G, Dass A et al (2020) Genetically modified crops: current status and future prospects. Planta 251:1–27. https://doi.org/10.1007/s00425-020-03372-8

    Article  CAS  Google Scholar 

  • Kuppu S, Mishra N, Hu R et al (2013) Water-deficit inducible expression of a cytokinin biosynthetic gene IPT improves drought tolerance in cotton. PLoS ONE 8:e64190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lafitte HR, Li ZK, Vijayakumar CHM et al (2006) Improvement of rice drought tolerance through backcross breeding: evaluation of donors and selection in drought nurseries. F Crop Res 97:77–86

    Article  Google Scholar 

  • Laxman RH, Upreti KK, Shivashankara KS, et al (2020) Management strategies for alleviating abiotic stresses in vegetable crops. New Front Stress Manag Durable Agric 523–542

  • Lee B-R, Zaman R, Avice J-C et al (2016) Sulfur use efficiency is a significant determinant of drought stress tolerance in relation to photosynthetic activity in Brassica napus cultivars. Front Plant Sci 7:10. https://doi.org/10.3389/fpls.2016.00459

    Article  Google Scholar 

  • Li J-F, Norville JE, Aach J et al (2013) Multiplex and homologous recombination–mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31:688–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li T, Hu Y, Du X et al (2014) Salicylic acid alleviates the adverse effects of salt stress in Torreya grandis cv. Merrillii seedlings by activating photosynthesis and enhancing antioxidant systems. PLoS ONE 9:e109492

    Article  PubMed  PubMed Central  Google Scholar 

  • Li X, Ahammed GJ, Li Z-X et al (2018a) Freezing stress deteriorates tea quality of new flush by inducing photosynthetic inhibition and oxidative stress in mature leaves. Sci Hortic (amsterdam) 230:155–160

    Article  CAS  Google Scholar 

  • Li Y, Ruperao P, Batley J et al (2018b) Investigating drought tolerance in chickpea using genome-wide association mapping and genomic selection based on whole-genome resequencing data. Front Plant Sci 9:190

    Article  PubMed  PubMed Central  Google Scholar 

  • Li R, Liu C, Zhao R et al (2019) CRISPR/Cas9-Mediated SlNPR1 mutagenesis reduces tomato plant drought tolerance. BMC Plant Biol 19:38. https://doi.org/10.1186/s12870-018-1627-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Liao S, Qin X, Luo L et al (2019) CRISPR/Cas9-induced mutagenesis of semi-rolled leaf1, 2 confers curled leaf phenotype and drought tolerance by influencing protein expression patterns and ROS scavenging in rice (Oryza sativa L.). Agronomy 9:728

    Article  CAS  Google Scholar 

  • Liu G, Du Q, Li J (2017) Interactive effects of nitrate-ammonium ratios and temperatures on growth, photosynthesis, and nitrogen metabolism of tomato seedlings. Sci Hortic (amsterdam) 214:41–50

    Article  CAS  Google Scholar 

  • Liu L, Zhang J, Xu J et al (2020) CRISPR/Cas9 targeted mutagenesis of SlLBD40, a lateral organ boundaries domain transcription factor, enhances drought tolerance in tomato. Plant Sci 301:110683. https://doi.org/10.1016/j.plantsci.2020.110683

    Article  CAS  PubMed  Google Scholar 

  • Machado RMA, Serralheiro RP (2017) Soil salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae 3:30

    Article  Google Scholar 

  • Madhusudhana R (2019) Marker-assisted breeding in sorghum. In: Breeding sorghum for diverse end uses. Elsevier, pp 93–114

  • Mafakheri M, Kordrostami M, Al-Khayri JM (2021) Abiotic stress in plants: socio-economic consequences and crops responses. Nanobiotechnology Mitig Abiotic Stress Plants 1–28

  • Makhotenko AV, Khromov AV, Snigir EA et al (2019) Functional analysis of coilin in virus resistance and stress tolerance of potato Solanum tuberosum using CRISPR-Cas9 editing. Dokl Biochem Biophys 484:88–91. https://doi.org/10.1134/S1607672919010241

    Article  CAS  PubMed  Google Scholar 

  • Mangin B, Bonnafous F, Blanchet N et al (2017) Genomic prediction of sunflower hybrids oil content. Front Plant Sci 8:1633

    Article  PubMed  PubMed Central  Google Scholar 

  • Maphosa L, Richards MF, Norton SL, Nguyen GN (2020) Breeding for abiotic stress adaptation in chickpea (Cicer arietinum L.): a comprehensive review. Crop Breed Genet Genom 4:981–987

    Google Scholar 

  • Marshall A (2007) GM soybeans and health safety—a controversy reexamined. Nat Biotechnol 25:981–987. https://doi.org/10.1038/nbt0907-981

    Article  CAS  PubMed  Google Scholar 

  • Mathur S, Agrawal D, Jajoo A (2014) Photosynthesis: response to high temperature stress. J Photochem Photobiol B Biol 137:116–126

    Article  CAS  Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard M (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mignard P, Font i Forcada C, Giménez R, Moreno MÁ (2023) Population structure and association mapping for agronomical and biochemical traits of a large Spanish apple germplasm. Plants 12:1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra GP, Singh B, Seth T, et al (2017) Biotechnological advancements and begomovirus management in okra (Abelmoschus esculentus L.): status and perspectives. Front Plant Sci 8:360

  • Mohammadi H, Amani-Ghadim AR, Matin AA, Ghorbanpour M (2020) Fe(0) nanoparticles improve physiological and antioxidative attributes of sunflower (Helianthus annuus) plants grown in soil spiked with hexavalent chromium. 3 Biotech 10:19. https://doi.org/10.1007/s13205-019-2002-3

  • Mukasa Y, Suzuki T, Honda Y (2007) Emasculation of Tartary buckwheat (Fagopyrum tataricum Gaertn.) using hot water. Euphytica 156:319–326

    Article  Google Scholar 

  • Munns R, James RA, Xu B et al (2012) Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nat Biotechnol 30:360–364

    Article  CAS  PubMed  Google Scholar 

  • Murovec J, Guček K, Bohanec B, et al (2018) DNA-free genome editing of Brassica oleracea and B. rapa protoplasts using CRISPR-Cas9 ribonucleoprotein complexes. Front Plant Sci 9:1594

  • Mwangangi IM, Muli JK, Neondo JO (2019) Plant hybridization as an alternative technique in plant breeding improvement

  • Nadarajah K (2019) Soil health: the contribution of microflora and microfauna. Mycorrhizosph Pedogenes 383–400

  • Nagendra H, Lucas R, Honrado JP et al (2013) Remote sensing for conservation monitoring: assessing protected areas, habitat extent, habitat condition, species diversity, and threats. Ecol Indic 33:45–59

    Article  Google Scholar 

  • Nawaz G, Han Y, Usman B, et al (2019) Knockout of OsPRP1, a gene encoding proline-rich protein, confers enhanced cold sensitivity in rice (Oryza sativa L.) at the seedling stage. 3 Biotech 9:254. https://doi.org/10.1007/s13205-019-1787-4

  • Noman A, Aqeel M, Deng J et al (2017) Biotechnological advancements for improving floral attributes in ornamental plants. Front Plant Sci 8:530

    Article  PubMed  PubMed Central  Google Scholar 

  • Nsibi M, Gouble B, Bureau S et al (2020) Adoption and optimization of genomic selection to sustain breeding for apricot fruit quality. G3 Genes. Genomes, Genet 10:4513–4529

    Google Scholar 

  • O’Donnell K, Sharrock S (2018) Botanic gardens complement agricultural gene bank in collecting and conserving plant genetic diversity. Biopreserv Biobank 16:384–390. https://doi.org/10.1089/bio.2018.0028

    Article  PubMed  PubMed Central  Google Scholar 

  • Ogata T, Ishizaki T, Fujita M, Fujita Y (2020) CRISPR/Cas9-targeted mutagenesis of OsERA1 confers enhanced responses to abscisic acid and drought stress and increased primary root growth under nonstressed conditions in rice. PLoS ONE 15:e0243376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osakabe Y, Watanabe T, Sugano SS et al (2016) Optimization of CRISPR/Cas9 genome editing to modify abiotic stress responses in plants. Sci Rep 6:26685. https://doi.org/10.1038/srep26685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oshunsanya SO, Nwosu NJ, Li Y (2019) Abiotic stress in agricultural crops under climatic conditions. Sustain Agric For Environ Manag 71–100

  • Palareti G, Legnani C, Cosmi B et al (2016) Comparison between different D-Dimer cutoff values to assess the individual risk of recurrent venous thromboembolism: analysis of results obtained in the DULCIS study. Int J Lab Hematol 38:42–49. https://doi.org/10.1111/ijlh.12426

    Article  CAS  PubMed  Google Scholar 

  • Pandey S, Fartyal D, Agarwal A et al (2017) Abiotic stress tolerance in plants: myriad roles of ascorbate peroxidase. Front Plant Sci 8:581

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandey MK, Chaudhari S, Jarquin D et al (2020) Genome-based trait prediction in multi-environment breeding trials in groundnut. Theor Appl Genet 133:3101–3117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pascual J, Rahikainen M, Kangasjärvi S (2017) Plant Light Stress. eLS 1–6. https://doi.org/10.1002/9780470015902.a0001319.pub3

  • Paul V, Guertler P, Wiedemann S, Meyer HHD (2010) Degradation of Cry1Ab protein from genetically modified maize (MON810) in relation to total dietary feed proteins in dairy cow digestion. Transgenic Res 19:683–689. https://doi.org/10.1007/s11248-009-9339-z

    Article  CAS  PubMed  Google Scholar 

  • Paul K, Sorrentino M, Lucini L et al (2019) A combined phenotypic and metabolomic approach for elucidating the biostimulant action of a plant-derived protein hydrolysate on tomato grown under limited water availability. Front Plant Sci 10:493

    Article  PubMed  PubMed Central  Google Scholar 

  • Paunov M, Koleva L, Vassilev A et al (2018) Effects of different metals on photosynthesis: cadmium and zinc affect chlorophyll fluorescence in durum wheat. Int J Mol Sci 19:787

    Article  PubMed  PubMed Central  Google Scholar 

  • Pearce RS (2001) Plant freezing and damage. Ann Bot 87:417–424

    Article  CAS  Google Scholar 

  • Pérez-Labrada F, López-Vargas ER, Ortega-Ortiz H et al (2019) Responses of Tomato Plants under Saline Stress to. Plants 8:1–17

    Article  Google Scholar 

  • Powles SB (1984) Photoinhibition of photosynthesis induced by visible light. Annu Rev Plant Physiol 35:15–44

    Article  CAS  Google Scholar 

  • Prince SJ, Beena R, Gomez SM et al (2015) Mapping consistent rice (Oryza sativa L.) yield QTLs under drought stress in target rainfed environments. Rice 8:1–13

    Article  Google Scholar 

  • Priyanka V, Kumar R, Dhaliwal I, Kaushik P (2021) Germplasm conservation: Instrumental in agricultural biodiversity—a review. Sustain 13:1–18. https://doi.org/10.3390/su13126743

    Article  Google Scholar 

  • Qiu Z, Kang S, He L, et al (2018) The newly identified heat-stress sensitive albino 1 gene affects chloroplast development in rice. Plant Sci 267:168–179. https://doi.org/10.1016/j.plantsci.2017.11.015

  • Que Z, Lu Q, Liu T, et al (2020) The rice annexin gene OsAnn5 is a positive regulator of cold stress tolerance at the seedling stage

  • Rabier C-E, Barre P, Asp T et al (2016) On the accuracy of genomic selection. PLoS ONE 11:e0156086

    Article  PubMed  PubMed Central  Google Scholar 

  • Rahman SU, McCoy E, Raza G et al (2023) Improvement of soybean; A way forward transition from genetic engineering to new plant breeding technologies. Mol Biotechnol 65:162–180

    Article  CAS  PubMed  Google Scholar 

  • Rajarajan K, Sakshi S, Varsha C, et al (2023) Biotechnological Implications in Tomato for Drought Stress Tolerance. Smart Plant Breed Veg Crop Post-genomics Era 99–116

  • Rajaram S, Braun HJ, Van Ginkel M (1996) CIMMYT’s approach to breed for drought tolerance. Euphytica 92:147–153. https://doi.org/10.1007/BF00022840

    Article  Google Scholar 

  • Rani S, Kumar P, Suneja P (2021) Biotechnological interventions for inducing abiotic stress tolerance in crops. Plant Gene 27:100315

    Article  Google Scholar 

  • Rao NKS, Laxman RH, Shivashankara KS (2016) Physiological and morphological responses of horticultural crops to abiotic stresses. Abiotic Stress Physiol Hortic Crop 3–17

  • Rihan HZ, Al-Issawi M, Fuller MP (2017) Advances in physiological and molecular aspects of plant cold tolerance. J Plant Interact 12:143–157

    Article  CAS  Google Scholar 

  • Robertsen CD, Hjortshøj RL, Janss LL (2019) Genomic selection in cereal breeding. Agronomy 9:95

    Article  Google Scholar 

  • Roca Paixão JF, Gillet F-X, Ribeiro TP et al (2019) Improved drought stress tolerance in Arabidopsis by CRISPR/dCas9 fusion with a Histone AcetylTransferase. Sci Rep 9:8080. https://doi.org/10.1038/s41598-019-44571-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rocha F, Bettencourt E, Gaspar C (2008) Genetic erosion assessment through the re-collecting of crop germplasm. Counties of Arcos de Valdevez, Melgaço, Montalegre, Ponte da Barca and Terras de Bouro (Portugal). Plant Genet Resour Newsl 154:6–13

    Google Scholar 

  • Romeis J, Raybould A, Bigler F et al (2013) Deriving criteria to select arthropod species for laboratory tests to assess the ecological risks from cultivating arthropod-resistant genetically engineered crops. Chemosphere 90:901–909. https://doi.org/10.1016/j.chemosphere.2012.09.035

    Article  CAS  PubMed  Google Scholar 

  • Roth M, Muranty H, Di Guardo M et al (2020) Genomic prediction of fruit texture and training population optimization towards the application of genomic selection in apple. Hortic Res. https://doi.org/10.1038/s41438-020-00370-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Roy SJ, Tucker EJ, Tester M (2011) Genetic analysis of abiotic stress tolerance in crops. Curr Opin Plant Biol 14:232–239

    Article  CAS  PubMed  Google Scholar 

  • Ruiz M, Rodriguez-Quijano M, Metakovsky EV, et al (2002) Polymorphism, variation and genetic identity of Spanish common wheat germplasm based on gliadin alleles. F Crop Res 79:185–196. https://doi.org/10.1016/S0378-4290(02)00139-9

  • Sakya AT, Sulistyaningsih E, Indradewa D, Purwanto BH (2018) Stomata character and chlorophyll content of tomato in response to Zn application under drought condition. In: IOP conference series: earth and environmental science. IOP Publishing, p 12033

  • Sallam AH, Smith KP (2016) Genomic selection performs similarly to phenotypic selection in barley. Crop Sci 56:2871–2881

    Article  CAS  Google Scholar 

  • Sandhya D, Jogam P, Allini VR, et al (2020) The present and potential future methods for delivering CRISPR/Cas9 components in plants. J Genet Eng Biotechnol 18:. https://doi.org/10.1186/s43141-020-00036-8

  • Sangodele EA, Hanchinal RR, Hanamaratti NG et al (2014) Analysis of drought tolerant QTL linked to physiological and productivity component traits under water-stress and non-stress in rice (Oryza sativa L.). Int J Curr Res Acad Rev 2:108–113

    CAS  Google Scholar 

  • Santosh Kumar VV, Verma RK, Yadav SK et al (2020) CRISPR-Cas9 mediated genome editing of drought and salt tolerance (OsDST) gene in indica mega rice cultivar MTU1010. Physiol Mol Biol Plants 26:1099–1110. https://doi.org/10.1007/s12298-020-00819-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarma B, Devi P, Gogoi N, Devi YM (2014) Effects of cobalt induced stress on Triticum aestivum L. crop. Asian J Agri Biol 2:137–147

    Google Scholar 

  • SCBD (2009) The convention on biological diversity plant conservation report: a review of progress in implementing the global strategy of plant conservation (GSPC). Secretariat of the Convention on Biological Diversity Montreal

  • Schaart JG, van de Wiel CCM, Lotz LAP, Smulders MJM (2016) Opportunities for products of new plant breeding techniques. Trends Plant Sci 21:438–449

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Kumar V, Shahzad B et al (2020) Photosynthetic response of plants under different abiotic stresses: a review. J Plant Growth Regul 39:509–531. https://doi.org/10.1007/s00344-019-10018-x

    Article  CAS  Google Scholar 

  • Shen C, Que Z, Xia Y et al (2017) Knock out of the annexin gene OsAnn3 via CRISPR/Cas9-mediated genome editing decreased cold tolerance in rice. J Plant Biol 60:539–547. https://doi.org/10.1007/s12374-016-0400-1

    Article  CAS  Google Scholar 

  • Sheteiwy MS, Gong D, Gao Y et al (2018) Priming with methyl jasmonate alleviates polyethylene glycol-induced osmotic stress in rice seeds by regulating the seed metabolic profile. Environ Exp Bot 153:236–248. https://doi.org/10.1016/j.envexpbot.2018.06.001

    Article  CAS  Google Scholar 

  • Shi J, Gao H, Wang H et al (2017) ARGOS 8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol J 15:207–216

    Article  CAS  PubMed  Google Scholar 

  • Shi W-G, Liu W, Yu W et al (2019) Abscisic acid enhances lead translocation from the roots to the leaves and alleviates its toxicity in Populus× canescens. J Hazard Mater 362:275–285

    Article  CAS  PubMed  Google Scholar 

  • Shufen C, Yicong C, Baobing F et al (2019) Editing of rice isoamylase gene ISA1 provides insights into its function in starch formation. Rice Sci 26:77–87

    Article  Google Scholar 

  • Singh V, Pallaghy CK, Singh D (2006) Phosphorus nutrition and tolerance of cotton to water stress: I. Seed cotton yield and leaf morphology. F Crop Res 96:191–198. https://doi.org/10.1016/j.fcr.2005.06.009

    Article  Google Scholar 

  • Slama I, Abdelly C, Bouchereau A et al (2015) Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann Bot 115:433–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smart RD, Blum M, Wesseler J (2017) Trends in approval times for genetically engineered crops in the United States and the European Union. J Agric Econ 68:182–198

    Article  Google Scholar 

  • Smith S, Bubeck D, Nelson B et al (2015) Genetic diversity and modern plant breeding. Genet Divers Eros Plants Indic Prev 20:55–88

    Article  Google Scholar 

  • Smith V, Wesseler JHH, Zilberman D (2021) New plant breeding technologies: an assessment of the political economy of the regulatory environment and implications for sustainability. Sustainability 13:3687

    Article  Google Scholar 

  • Sorrentino M, Panzarová K, Spyroglou I et al (2022) Integration of phenomics and metabolomics datasets reveals different mode of action of biostimulants based on protein hydrolysates in Lactuca sativa L. and Solanum lycopersicum L. under salinity. Front Plant Sci 12:3333

    Article  Google Scholar 

  • Sun X, Zhao T, Gan S et al (2016) Ethylene positively regulates cold tolerance in grapevine by modulating the expression of ETHYLENE RESPONSE FACTOR 057. Sci Rep 6:1–14

    Google Scholar 

  • Sun J, Poland JA, Mondal S et al (2019) High-throughput phenotyping platforms enhance genomic selection for wheat grain yield across populations and cycles in early stage. Theor Appl Genet 132:1705–1720

    Article  CAS  PubMed  Google Scholar 

  • Svitashev S, Young JK, Schwartz C et al (2015) Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol 169:931–945

    Article  PubMed  PubMed Central  Google Scholar 

  • Swaminathan MS (2002) The past, present and future contributions of farmers to the conservation and development of genetic diversity. In: Managing plant genetic diversity. Proceedings of an international conference, Kuala Lumpur, Malaysia, 12–16 June 2000. CABI Publishing Wallingford UK, pp 23–31

  • Talaat NB, Shawky BT (2016) Dual application of 24-epibrassinolide and spermine confers drought stress tolerance in maize (Zea mays L.) by modulating polyamine and protein metabolism. J Plant Growth Regul 35:518–533

    Article  CAS  Google Scholar 

  • Talaat NB (2019) Abiotic stresses-induced physiological alteration in wheat. Wheat Prod Chang Environ Responses, Adapt Toler 1–30

  • Tan W, Meng Q wei, Brestic M, et al (2011) Photosynthesis is improved by exogenous calcium in heat-stressed tobacco plants. J Plant Physiol 168:2063–2071. https://doi.org/10.1016/j.jplph.2011.06.009

  • Todua N, Gogitidze T (2017) Georgian Farmers’ Attitudes Towards Genetically Modified Crops. Econ World. https://doi.org/10.17265/2328-7144/2017.04.009

  • Tran TT, Kano-Nakata M, Takeda M et al (2014) Nitrogen application enhanced the expression of developmental plasticity of root systems triggered by mild drought stress in rice. Plant Soil 378:139–152. https://doi.org/10.1007/s11104-013-2013-5

    Article  CAS  Google Scholar 

  • Tran MT, Doan DTH, Kim J et al (2021) CRISPR/Cas9-based precise excision of SlHyPRP1 domain(s) to obtain salt stress-tolerant tomato. Plant Cell Rep 40:999–1011. https://doi.org/10.1007/s00299-020-02622-z

    Article  CAS  PubMed  Google Scholar 

  • Ueta R, Abe C, Watanabe T et al (2017) Rapid breeding of parthenocarpic tomato plants using CRISPR/Cas9. Sci Rep 7:507. https://doi.org/10.1038/s41598-017-00501-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Unkovich M, McKenzie D, Parker W (2023) New insights into high soil strength and crop plants; implications for grain crop production in the Australian environment. Plant Soil 1–26

  • Van de Wouw M, Kik C, van Hintum T et al (2010) Genetic erosion in crops: concept, research results and challenges. Plant Genet Resour 8:1–15

    Article  Google Scholar 

  • Verma S, Kumar N, Verma A et al (2020) Novel approaches to mitigate heat stress impacts on crop growth and development. Plant Physiol Reports 25:627–644

    Article  Google Scholar 

  • Vivek BS, Krishna GK, Vengadessan V et al (2017) Use of genomic estimated breeding values results in rapid genetic gains for drought tolerance in maize. Plant Genome. https://doi.org/10.3835/plantgenome2016.07.0070

    Article  PubMed  Google Scholar 

  • Vogel KE (2009) Backcross breeding. Transgenic Maize Methods Protoc 161–169

  • Voss-Fels KP, Cooper M, Hayes BJ (2019) Accelerating crop genetic gains with genomic selection. Theor Appl Genet 132:669–686

    Article  PubMed  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223

    Article  Google Scholar 

  • Waltz E (2016) Gene-edited CRISPR mushroom escapes US regulation. Nature 532:293

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Xu Y, Hu Z, Xu C (2018) Genomic selection methods for crop improvement: current status and prospects. Crop J 6:330–340

    Article  Google Scholar 

  • Wang Y, Yang R, Zheng J et al (2019) Exogenous foliar application of fulvic acid alleviate cadmium toxicity in lettuce (Lactuca sativa L.). Ecotoxicol Environ Saf 167:10–19

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Zhong Z, Wang X et al (2020a) Knockout of the OsNAC006 transcription factor causes drought and heat sensitivity in rice. Int J Mol Sci 21:2288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Michalet R, Liu Z et al (2020b) Disentangling large-and small-scale abiotic and biotic factors shaping soil microbial communities in an alpine cushion plant system. Front Microbiol 11:925

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang T, Xun H, Wang W et al (2021a) Mutation of GmAITR genes by CRISPR/Cas9 genome editing results in enhanced salinity stress tolerance in soybean. Front Plant Sci 12:779598. https://doi.org/10.3389/fpls.2021.779598

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X, Ren P, Ji L et al (2021b) OsVDE, a xanthophyll cycle key enzyme, mediates abscisic acid biosynthesis and negatively regulates salinity tolerance in rice. Planta 255:6. https://doi.org/10.1007/s00425-021-03802-1

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Jiang H, Mao Z et al (2021c) Ethylene increases the cold tolerance of apple via the MdERF1B–MdCIbHLH1 regulatory module. Plant J 106:379–393

    Article  CAS  PubMed  Google Scholar 

  • Wani SH, Kumar V, Shriram V, Sah SK (2016) Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J 4:162–176

    Article  Google Scholar 

  • Winkel-Shirley B (2001) Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126:485–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolter F, Schindele P, Puchta H (2019) Plant breeding at the speed of light: the power of CRISPR/Cas to generate directed genetic diversity at multiple sites. BMC Plant Biol 19:176. https://doi.org/10.1186/s12870-019-1775-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu L, Liu D, Wu J et al (2013) Regulation of FLOWERING LOCUS T by a microRNA in Brachypodium distachyon. Plant Cell 25:4363–4377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu G, Singh SK, Reddy VR et al (2016a) Soybean grown under elevated CO2 benefits more under low temperature than high temperature stress: Varying response of photosynthetic limitations, leaf metabolites, growth, and seed yield. J Plant Physiol 205:20–32

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Ibrahim IM, Harvey PJ (2016b) The influence of photoperiod and light intensity on the growth and photosynthesis of Dunaliella salina (chlorophyta) CCAP 19/30. Plant Physiol Biochem 106:305–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yabe S, Yoshida H, Kajiya-Kanegae H et al (2018) Description of grain weight distribution leading to genomic selection for grain-filling characteristics in rice. PLoS ONE 13:e0207627

    Article  PubMed  PubMed Central  Google Scholar 

  • Yadav V, Kumar P, Goyal M (2018) Evaluation of genetic diversity in drought tolerant and sensitive varieties of wheat using ISSR markers. Electron J Plant Breed 9:146–153

    Article  Google Scholar 

  • Yang B, Tang J, Yu Z et al (2019) Light stress responses and prospects for engineering light stress tolerance in crop plants. J Plant Growth Regul 38:1489–1506

    Article  CAS  Google Scholar 

  • Yao C, Zhang F, Sun X et al (2019) Effects of S-abscisic acid (S-ABA) on seed germination, seedling growth, and ASR1 gene expression under drought stress in maize. J Plant Growth Regul 38:1300–1313

    Article  CAS  Google Scholar 

  • Yin Y, Qin K, Song X et al (2018) BZR1 Transcription Factor Regulates Heat Stress Tolerance Through FERONIA Receptor-Like Kinase-Mediated Reactive Oxygen Species Signaling in Tomato. Plant Cell Physiol 59:2239–2254. https://doi.org/10.1093/pcp/pcy146

    Article  CAS  PubMed  Google Scholar 

  • Yu W, Wang L, Zhao R et al (2019) Knockout of SlMAPK3 enhances tolerance to heat stress involving ROS homeostasis in tomato plants. BMC Plant Biol 19:354. https://doi.org/10.1186/s12870-019-1939-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zafar S, Nasri M, Moghadam HRT, Zahedi H (2014) Effect of zinc and sulfur foliar applications on physiological characteristics of sunflower (Helianthus annuus L.) under water deficit stress. Int J Biosci 5:87–96

    Article  CAS  Google Scholar 

  • Zaidi PH, Rashid Z, Vinayan MT et al (2015) QTL mapping of agronomic waterlogging tolerance using recombinant inbred lines derived from tropical maize (Zea mays L) germplasm. PLoS ONE 10:e0124350

    Article  PubMed  PubMed Central  Google Scholar 

  • Zdziarski IM, Edwards JW, Carman JA, Haynes JI (2014) GM crops and the rat digestive tract: a critical review. Environ Int 73:423–433. https://doi.org/10.1016/j.envint.2014.08.018

    Article  CAS  PubMed  Google Scholar 

  • Zegada-Lizarazu W, Iijima M (2005) Deep root water uptake ability and water use efficiency of pearl millet in comparison to other millet species. Plant Prod Sci 8:454–460

    Article  Google Scholar 

  • Zeng Y, Wen J, Zhao W, et al (2020) Rational Improvement of Rice Yield and Cold Tolerance by Editing the Three Genes OsPIN5b, GS3, and OsMYB30 With the CRISPR–Cas9 System . Front Plant Sci 10

  • Zhang X, Yang G, Shi R et al (2013) Arabidopsis cysteine-rich receptor-like kinase 45 functions in the responses to abscisic acid and abiotic stresses. Plant Physiol Biochem 67:189–198. https://doi.org/10.1016/j.plaphy.2013.03.013

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Li G, Chen T et al (2018a) Heat stress induces spikelet sterility in rice at anthesis through inhibition of pollen tube elongation interfering with auxin homeostasis in pollinated pistils. Rice 11:1–12

    Article  Google Scholar 

  • Zhang S, Zhang R, Song G et al (2018b) Targeted mutagenesis using the Agrobacterium tumefaciens-mediated CRISPR-Cas9 system in common wheat. BMC Plant Biol 18:302. https://doi.org/10.1186/s12870-018-1496-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang A, Liu Y, Wang F et al (2019) Enhanced rice salinity tolerance via CRISPR/Cas9-targeted mutagenesis of the OsRR22 gene. Mol Breed 39:47. https://doi.org/10.1007/s11032-019-0954-y

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Zhang Z, Xie S et al (2016a) Mutational Evidence for the Critical Role of CBF Transcription Factors in Cold Acclimation in Arabidopsis. Plant Physiol 171:2744–2759. https://doi.org/10.1104/pp.16.00533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao L, Lei J, Huang Y et al (2016b) Mapping quantitative trait loci for heat tolerance at anthesis in rice using chromosomal segment substitution lines. Breed Sci 66:358–366

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng M, Lin J, Liu X et al (2021) Histone acetyltransferase TaHAG1 acts as a crucial regulator to strengthen salt tolerance of hexaploid wheat. Plant Physiol 186:1951–1969. https://doi.org/10.1093/plphys/kiab187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J-K (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J-K (2016) Abiotic stress signaling and responses in plants. Cell 167:313–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu T, Deng X, Zhou X et al (2016) Ethylene and hydrogen peroxide are involved in brassinosteroid-induced salt tolerance in tomato. Sci Rep 6:1–15

    Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baber Ali.

Ethics declarations

Conflict of interest

There is no conflict between the authors.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Communicated by Gerhard Leubner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hafeez, A., Ali, B., Javed, M.A. et al. Plant breeding for harmony between sustainable agriculture, the environment, and global food security: an era of genomics‐assisted breeding. Planta 258, 97 (2023). https://doi.org/10.1007/s00425-023-04252-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-023-04252-7

Keywords

Navigation