Skip to main content

Plant Responses and Tolerance to Combined Salt and Drought Stress

  • Chapter
  • First Online:
Salt and Drought Stress Tolerance in Plants

Part of the book series: Signaling and Communication in Plants ((SIGCOMM))

Abstract

Agricultural production is exposed to different environmental challenges such as salinity, drought, and global warming; plants have used different physiological and biochemical responses to adapt and survive under abiotic stress conditions. Drought and salinity are the most important abiotic constraints to plant survival and to crop productivity; they furthermore have main harmful effects on the plant tissue such as the negative effects on the cellular energy supply and redox homeostasis that are stable by re-programming of plant primary metabolism and modification of cellular composition. The agricultural sector is considered the main user of freshwater resources in numerous regions of the world, with growing population and increasing water scarcity in various regions of the world, thus reducing the amount of crop production, which affects the availability of global food quantity in the near future. Drought can affect plants in various ways such as decrease in photosynthesis and growth inhibition; accumulation of abscisic acid (ABA), proline, mannitol, sorbitol; formation of radical scavenging compounds (ascorbate, glutathione, α-tocopherol etc.); and synthesis of new proteins and mRJNAs; also, water stress results in stomatal closure and reduced transpiration rates, a reduce in the water potential of plant tissues, and therefore, plants under drought stress use two processing to control the relation between photosynthetic potential and relative water content of leaves; first one through decreased stomatal conductance and reduced photosynthesis and decreased CO2 concentration inside the leaf, while the other one by elevated CO2 which decreases progressively as relative water content (RWC) declines, and reduced gas exchange; with both type there is reducing in metabolic processing in leaf tissue. Salinity stress causes changes in numerous physiological and metabolic processes in plant tissue, unfortunately, the majority of economic crop species are glycophytes, therefore, salinity inhibits crop productivity worldwide. Salinity stress causes changes in various physiological and metabolic processes, depending on severity and duration of the stress, and eventually hamper crop production; glycophytes plant have different physiological mechanisms such as ion homeostasis, compatible solute, antioxidant regulation, and polyamines production. Generally, plants could combine a range of response to avoiding drought and salinity stresses injuries by different mechanisms to be able to complete their life cycle. By using different strategies such as using maximum available resources, they store reserves in plant organs and use them for fruit production; also, plants can tolerate stress conditions by avoiding tissue dehydration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ROS:

Reactive oxygen species

UV:

Ultraviolet

ASAL:

Arid and semi-arid regions

NO:

Nitric oxide

CAM:

Crassulacean acid metabolism

PEP:

Phosphoenol pyruvate

DSP:

Dimethyl sulfonium propionate

WF:

Water fraction

ABA:

Abscisic acid

V-ATPase:

Vacuolar type H+-ATPase

V-PPase:

Vacuolar pyrophosphatase

SOS:

Salt Overly Sensitive

CMO:

Choline monooxygenase

ETC:

Electron transport chains

BADH:

Betaine aldehyde dehydrogenase

1O2 :

Singlet oxygen

OH :

Hydroxyl radical

O 2 :

The superoxide radical

H2O2 :

Hydrogen peroxide

SOD:

Superoxide dismutase

CAT:

Catalase

GPX:

Glutathione peroxidase

APX:

Ascorbate peroxidase

GR:

Glutathione reductase

Si:

Silicon

PA:

Polyamines

PUT:

Diamine Putrescine

SPD:

Triamine spermidine

SPM:

Tetra-amine spermine

ODC:

Ornithine decarboxylase

ADC:

Arginine decarboxylase

SNP:

Sodium nitroprusside

MDA:

Malondialdehyde

DNA:

Deoxyribonucleic acid

Rubisco:

Ribulose 1,5-bisphosphate carboxylase/oxygenase

RO:

Alkoxy radicals

SA:

Salicylic acid

RWC:

Relative water content

References

  • Abobatta WF (2018) Some physiological mechanisms of salt tolerance in the glycophytes plant: overview. Acta Sci Agric 2(12):154–156

    Google Scholar 

  • Agarwal PK, Agarwal P, Reddy MK, Sopory SK (2006) Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep 25:1263–1274

    Article  CAS  PubMed  Google Scholar 

  • Ahanger MA, Tyagi SR, Wani, MR, Ahmad P (2014) Drought tolerance: role of organic osmolytes, growth regulators, and mineral nutrients. In: Physiological mechanism and adaptative strategies in plants under changing environment. Springer, pp 25–55

    Google Scholar 

  • Aharon R, Shahak Y, Wininger S, Bendov R, Kapulnik Y, Galili G (2003) Overexpression of a plasma membrane aquaporins in transgenic tobacco improves plant vigour under favourable growth conditions but not under drought or salt stress. Plant Cell 15:439–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad P, Prasad MNV (2012) Abiotic stress responses in plants: metabolism, productivity and sustainability. Springer, New York, NY

    Book  Google Scholar 

  • Ahmad R, Lim CJ, Kwon SY (2013) Glycine betaine: a versatile compound with great potential for gene pyramiding to improve crop plant performance against environmental stresses. Plant Biotechnol Rep 7:49–57

    Article  Google Scholar 

  • Ahmadi A, Baker DA (2001) The effect of water stress on the activities of key regulatory enzymes of the sucrose to starch pathway in wheat. Plant Growth Regul 35:81–91

    Article  CAS  Google Scholar 

  • Alamgir ANM, Yousuf-Ali M (1999) Effect of salinity on leaf pigments, sugar and protein concentrations and chloroplast ATPase activity of rice (Oryza sativa L.). Bangladesh J Bot 28 (2):145–149

    Google Scholar 

  • Alexieva V, Sergiev I, Mapelli S, Karanov E (2001) The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ 24:1337–1344

    Article  CAS  Google Scholar 

  • Araus JL, Slafer GA, Reynolds MP, Royo C (2002) Plant breeding and drought in C3 cereals: what should we breed for? Ann Bot 89:925–940

    Article  PubMed  PubMed Central  Google Scholar 

  • Ashraf M (2010) Inducing drought tolerance in plants: recent advances. Biotchnol Adv 28:169–183. https://www.mdpi.com/2223-7747/8/7/232/htm

  • Bajgu A (2014) Nitric oxide: role in plants under abiotic stress. In: Physiological mechanisms and adaptation strategies in plants under changing environment, pp 137–159

    Google Scholar 

  • Ball RA, Oosterhuis DM, Mauromoustakos A (1994) Growth dynamics of the cotton plant during water-deficit stress. Agron J 86:788–795

    Article  Google Scholar 

  • Bandurska H, Stroiński A (2005) The effect of salicylic acid on barley response to water deficit. Acta Physiol Plant 27:379–386

    Article  CAS  Google Scholar 

  • Basnayake J, Fukai S, Ouk M (2006) Contribution of potential yield, drought tolerance and escape to adaptation of 15 rice varieties in rainfed lowlands in Cambodia. In: Proceedings of the Australian Agronomy Conference, Australian Society of Agronomy, Birsbane, Australia

    Google Scholar 

  • Ben Ahmed C, Ben Rouina B, Sensoy S, Boukhriss M, Ben Abdullah F (2009) Exogenous proline effects on photosynthetic performance and antioxidant defense system of young olive tree. J Agric Food Chem 58(7):4216–4222

    Article  CAS  Google Scholar 

  • Berry P, Ramirez-villegas J, Branseley H (2013) Regional impacts of climate change on agriculture and the role of adaptation. Plant Genet Res Clim Chang 4:78

    Article  Google Scholar 

  • Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptations to environmental stresses. Plant Cell 7(7):1099–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bond WJ (1998) Effluent irrigation—an environmental challenge for soil science. Aust J Soil Res 36:543–555

    Article  Google Scholar 

  • Bouwer H (2002) Integrated water management for the 21st century: problems and solutions. J Irrig Drain Eng 28:193–202

    Article  Google Scholar 

  • Brito C, Dinis LT, Moutinho-Pereora J, Correia CM (2019) Drought stress effects and olive tree acclimation under a changing climate. Plants 8(7):232. https://doi.org/10.3390/plants8070232

    Article  CAS  PubMed Central  Google Scholar 

  • Bui EN, Smettem KRJ, Moran CJ, Williams J (1996) Use of soil survey information to assess regional salinization risk using geographical information systems. Environ Qual 25:433–439

    Article  CAS  Google Scholar 

  • Cabot C, Sibole JV, Barcelo J, Poschenrieder C (2009) Abscisic acid decreases leaf Na+ exclusion in salt-treated Phaseolus vulgaris L. J Plant Growth Regul 28(2):187–192

    Article  CAS  Google Scholar 

  • Cai X, Molden D, Mainuddin M, Sharma B, Mohyddin A, Karini P (2013) Producing more food with less water in the changing world: assessment of water productivity in 10 major river basins. Water Intl 36:421–462

    Google Scholar 

  • Chandra A, Anand A, Dubey A (2007) Effect of salicylic acid on morphological and biochemical attributes in cowpea. J Environ Biol 28:193–196

    CAS  PubMed  Google Scholar 

  • Chapman SC, Edmeades GO (1999) Selection improves drought tolerance in tropical maize populations. II. Direct and correlated responses among secondary traits. Crop Sci 39:1315–1324

    Google Scholar 

  • Cha-Um S, Kirdmanee C (2010) Effect of glycinebetaine on proline, water use, and photosynthetic efficiencies, and growth of rice seedlings under salt stress. Turkish J Agric Forest 34(6):517–527

    CAS  Google Scholar 

  • Chaumont F, Tyerman SD (2014) Aquaporins: highly regulated channels controlling plant water relations. Plant Physiol 164:1600–1618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaves MM, Oliveira MM (2004) Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J Exp Bot 55:2365–2384

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Provart NJ, Glazebrook J, Katagiri F, Chang HS, Eulgem T, Mauch F, Luan S, Zou G, Whitham SA, Budworth PR, Tao Y, Xie Z, Chen X, Lam S, Kreps JA, Harper JF, Si-Ammour A, Mauch-Mani B, Heinlein M, Kobayashi K, Hohn T, Dang JL, Wang X, Zhu T (2002) Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell 14:559–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheserek JJ, Gichimu BM (2012) Drought and heat tolerance in coffee: a review. Int Res J Agric Sci Soil Sci 2(12):498–501

    Google Scholar 

  • Cornic G, Massacci A (1996) Leaf photosynthesis under drought stress. In: Baker NR (ed) Photosynthesis and the environment. Kluwer Academic Publishers, The Netherlands

    Google Scholar 

  • Crawford NM (2006) Mechanisms for nitric oxide synthesis in plants. J Exp Bot 57(3):471–478

    Article  CAS  PubMed  Google Scholar 

  • Cruz De Carvalho MH (2008) Drought stress and reactive oxygen species: production, scavenging and signaling. Plant Signal Behav 3:156–165

    Article  PubMed  PubMed Central  Google Scholar 

  • DaMatta FM (2004) Exploring drought tolerance in coffee: a physiological approach with some insights for plant breeding. Braz J Plant Physiol 16:1–6

    Article  Google Scholar 

  • Davenport SB, Gallego SM, Benavides MP, Tomaro ML (2003) Behaviour of anti-oxidant defence system in the adaptive response to salt stress in Helianthus annuus L. Cell Plant Growth Regul 40:81–88

    Article  CAS  Google Scholar 

  • De Lourdes OOM, Menezes Sobreira AC, De Aragao FME, Orellano EG, Silva Lima D-GM, De Melo FD (2001) Saltmodulation of vacuolarH+-ATPase and H+-Pyrophosphatase activities in Vigna unguiculata. J Plant Physiol 158(5):545–551

    Article  Google Scholar 

  • Deivanai S, Xavier R, Vinod V, Timalata K, Lim OF (2011) Role of exogenous proline in ameliorating salt stress at early stage in two rice cultivars. J Stress Physiol Biochem 7:157–174

    Google Scholar 

  • Dietz KJ, Tavakoli N, Kluge C (2001) Significance of the Vtype ATPase for the adaptation to stressful growth conditions and its regulation on the molecular and biochemical level. J Exp Bot 52(363):1969–1980

    Article  CAS  PubMed  Google Scholar 

  • Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A, Sadia S, Nasim W, Adkins S, Saud S, Ihsan MZ, Alharby H, Wu C, Wang D, Huang J (2017) Crop production under drought and heat stress: plant responses and management options. Front Plant Sci 8:1147

    Article  PubMed  PubMed Central  Google Scholar 

  • FAO (2009) High level expert forum—how to feed the world in 2050. Economic and Social Development, Food and Agricultural Organization of the United Nations, Rome, Italy

    Google Scholar 

  • FAO (2017) Faostat [online]. https://www.faostate.fao.org/

  • Farooq M, Hussain M, Wakeel A, Siddique KHM (2015) Salt stress in maize: effects, resistance mechanisms, and management. A review. Agron Sustain Dev 35:461–481

    Article  CAS  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185–212

    Article  Google Scholar 

  • Farooq MA, Lee DJ, Wahid A, Cheema S, Aziz T (2010) Drought stress: comparative time course action of the foliar applied glycine betaine, salicylic acid, nitrous oxide, brassinosteroids and spermine in improving drought resistance of rice. J Agron Crop Sci 196:336–345

    Article  CAS  Google Scholar 

  • Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55(396):307–319

    Article  CAS  PubMed  Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    Article  CAS  PubMed  Google Scholar 

  • Fu J, Huang B (2001) Involvement of antioxidants and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress. Environ Exp Bot 45:105–114

    Article  CAS  PubMed  Google Scholar 

  • Fukuda A, Tanaka Y (2006) Effects of ABA, auxin, and gibberellin on the expression of genes for vacuolar H+-inorganic pyrophosphatase, H+-ATPase subunitA, and Na+/H+ antiporter in barley. Plant Physiol Biochem 44(5–6):351–358

    Google Scholar 

  • Gama PBS, Tanaka K, Eneji AE, Eltayeb AE, El Siddig K (2009) Salt-induced stress effects on biomass, photosynthetic rate, and reactive oxygen species-scavenging enzyme accumulation in common bean. J Plant Nutr 32:837–854

    Article  CAS  Google Scholar 

  • Gao Z, Sagi M, Lips SH (1998) Carbohydrate metabolism in leaves and assimilate partitioning in fruits of tomato (Lycopersicon esculentumL.) as affected by salinity. Plant Sci 135(2):149–159

    Google Scholar 

  • Garg BK (2003) Nutrient uptake and management under drought: nutrient-moisture interaction. Curr Agric 27:1–8

    Google Scholar 

  • Gill SS, Tutej N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Tajrishi M, Madan M, Tuteja N (2013) A DESD box helicase functions in salinity stress tolerance by improving photosynthesis and antioxidant machinery in rice (Oryza sativa L. cv. PB1). Plant Mol Biol 82(1–2):1–22

    Google Scholar 

  • Gorantla M, Babu R, Lachagari VBR, Reddy AMM, Wusirika R, Bennetzen JL, Reddy AR (2006) Identification of tressresponsive genes in an indica rice (Oryza sativa L.) using ESTs generated from drought-stressed seedlings. J Exp Bot 58:253–265

    Article  PubMed  CAS  Google Scholar 

  • Groß F, Durner J, Gaupels F (2013) Nitric oxide, antioxidants and prooxidants in plant defence responses. Front Plant Sci 4:419

    Article  PubMed  PubMed Central  Google Scholar 

  • Grossman A, Takahashi H (2001) Macronutrient utilization by photosynthetic eukaryotes and the fabric of interactions. Annu Rev Plant Phys 52:163–210

    Article  CAS  Google Scholar 

  • Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genom 701596:18

    Google Scholar 

  • Gupta KJ, Stoimenova M, Kaiser WM (2005) In higher plants, only root mitochondria, but not leaf mitochondria reduce nitrite to NO, in vitro and in situ. J Exp Bot 56(420):2601–2609

    Article  CAS  PubMed  Google Scholar 

  • Gurmani AR, Bano A, Khan SU, Din J, Zhang JL (2011) Alleviation of salt stress by seed treatment with abscisic acid (ABA), 6-benzylaminopurine (BA) and chlormequat chloride (CCC) optimizes ion and organic matter accumulation and increases yield of rice (Oryza sativa L.). Aust J Crop Sci 5 (10): 1278–1285

    Google Scholar 

  • Hanson AD, Rathinasabapathi B, Rivoal J, Burnet M, Dillon MO, Gage DA (1994) Osmoprotective compounds in the Plumbaginaceae: a natural experiment in metabolic engineering of stress tolerance. Proc Natl Acad Sci USA 91(1):306–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris BN, Sadras VO, Tester M (2010) A water-centred framework to assess the effects of salinity on the growth and yield of wheat and barley. Plant Soil 336:377–389

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Alhaithloul HAS, Parvin K, Bhuyan MHM, Tanveer M, Mohsin SM, Fujita M (2019) Polyamine action under metal/metalloid stress: regulation of biosynthesis, metabolism, and molecular interactions. Int J Mol Sci 20:3215

    Article  CAS  PubMed Central  Google Scholar 

  • Hasegawa PM (2013) Sodium (Na+) homeostasis and salt tolerance of plants. Environ Exp Bot 92:19–31

    Article  CAS  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu J-K, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Ann Rev Plant Biol 51:463–499

    Article  CAS  Google Scholar 

  • Hoekstra FA, Golovina EA, Buitink J (2001) Mechanisms of plant desiccation tolerance. Trends Plant Sci 6:431–438

    Article  CAS  PubMed  Google Scholar 

  • Hsiao TC, Xu LK (2000) Sensitivity of growth of roots versus leaves to water stress: biophysical analysis and relation to water transport. J Exp Bot 51:1595–1616

    Article  CAS  PubMed  Google Scholar 

  • Hussain S, Saleem MF, Iqbal J, Ibrahim M, Ahmad M, Nadeem SM, Ali A, Atta S (2015) Abscic acid mediated biochemical changes in sunflower (Helianthus annuus L.) grown under drought and well-watered field conditions. J Anim Plant Sci 25(2):406–416

    Google Scholar 

  • Ishitani M, Liu J, Halfter U, Kim CS, Shi W, Zhu JK (2000) SOS3 function in plant salt tolerance requires Nmyristoylation and calcium binding. Plant Cell 12(9):1667–1677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Javot H, Maurel C (2002) The role of aquaporins in root water uptake. Ann Bot 90:301–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Javot H, Lauvergeat V, Santoni V, Martin-Laurent F, Guclu J, Vinh J, Heyes J, Franck KI, Schaffner AR, Bouchez D, Maurel C (2003) Role of a single aquaporin isoform in root water uptake. Plant Cell 15:509–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joyce SM, Cassells AC, Mohan JS (2003) Stress and aberrant phenotypes in vitro culture. Plant Cell Tiss Organ Cult 74:103–121

    Article  CAS  Google Scholar 

  • Kamara AY, Menkir A, Badu-Apraku B, Ibikunle O (2003) The influence of drought stress on growth, yield and yield components of selected maize genotypes. J Agric Sci 141:43–50

    Google Scholar 

  • Kang GZ, Li GZ, Liu GQ, Xu W, Peng XQ, Wang CY (2013) Exogenous salicylic acid enhances wheat drought tolerance by influence on the expression of genes related to ascorbate-glutathione cycle. Biol Plant (Prague) 57:718–724

    Article  CAS  Google Scholar 

  • Kavar T, Maras M, Kidric M, Sustar-Vozlic J, Meglic V (2007) Identification of genes involved in the response of leaves of Phaseolus vulgaris to drought stress. Mol Breed 21:159–172

    Article  CAS  Google Scholar 

  • Kawakami J, Iwama K, Jitsuyama Y (2006) Soil water stress and the growth and yield of potato plants grown from microtubers and conventional seed tubers. Field Crops Res 95:89–96

    Google Scholar 

  • Keskin BC, Sarikaya AT, Yuksel B, Memon AR (2010) Abscisic acid regulated gene expression in bread wheat (Triticum aestivum L.). Aust J Crop Sci 4(8):617–625

    Google Scholar 

  • Kim YH, Khan AL, Waqas M, Shim JK, Kim DH, Lee KY, Lee IJ (2014) Silicon application to rice root zone influenced the phytohormonal and antioxidant responses under salinity stress. J Plant Growth Regul 33:137–149

    Article  CAS  Google Scholar 

  • Knott JM, Romer P, Sumper M (2007) Putative spermine synthases from Thalassiosira pseudonana and Arabidopsis thaliana synthesize thermospermine rather than spermine. FEBS Lett 581(16):3081–3086

    Article  CAS  PubMed  Google Scholar 

  • Kopyra M, Gwozdz EA (2003) Nitric oxide stimulates seed germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of Lupinus luteus. Plant Physiol Biochem 41(11–12):1011–1017

    Article  CAS  Google Scholar 

  • Kovacs Z, Simon-Sarkadi L, Szucs A, Kocsy G (2010) Differential effects of cold, osmotic stress and abscisic acid on polyamine accumulation in wheat. Amino Acids 38(2):623–631

    Article  CAS  PubMed  Google Scholar 

  • Kovtun Y, Chiu WL, Tena G, Sheen J (2000) Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci USA 97:2940–2945

    Article  CAS  Google Scholar 

  • Kramer PJ, Boyer JS (1995) Water relations of plants and soils. Academic Press, San Diego

    Google Scholar 

  • Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 1–16

    Google Scholar 

  • Lafitte HR, Yongsheng G, Yan S, Li ZK (2007) Whole plant responses, key processes, and adaptation to drought stress: the case of rice. J Exp Bot 58:169–175

    Google Scholar 

  • Lazaridou M, Koutroubas SD (2004) Drought effect on water use efficiency of berseem clover at various growth stages. New directions for a diverse planet. In: Proceedings of the 4th international crop science congress, Brisbane, Australia, 26 Sept–1 Oct 2004

    Google Scholar 

  • Levitt J (1980) Responses of plants to environmental stresses: water, radiation, salt, and other stresses. Academic Press, New York, pp 365–488

    Google Scholar 

  • Li YP, Ye W, Wang M, Yan XD (2009) Climate change and drought: a risk assessment of crop-yield impacts. Clim Res 39:31–46

    Article  CAS  Google Scholar 

  • Liu J, Ishitani M, Halfter U, Kim C-S, Zhu J-K (2000) The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proc Natl Acad Sci USA 97(7):3730–3734

    Article  CAS  Google Scholar 

  • Ludlow MM, Muchow RC (1990) A critical evaluation of traits for improving crop yields in water-limited environments. Adv Agron 43:107–153

    Article  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444(2):139–158

    Article  CAS  PubMed  Google Scholar 

  • Mansfield TJ, Atkinson CJ (1990) Stomatal behaviour in water stressed plants. In: Alscher RG, Cumming JR (eds) Stress responses in plants: adaptation and acclimation mechanisms. Wiley-Liss, New York, pp 241–264

    Google Scholar 

  • Martınez-Atienza J, Jiang X, Garciadeblas B (2007) Conservation of the salt overly sensitive pathway in rice. Plant Physiol 143(2):1001–1012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martínez JP, Silva H, Ledent JF, Pinto M (2007) Effect of drought stress on the osmotic adjustment, cell wall elasticity and cell volume of six cultivars of common beans (Phaseolus vulgaris L.). Europ J Agron 26:30–38. https://doi.org/10.1016/j.eja.2006.08.003

  • Matysik J, Alia A, Bhalu B, Mohanty P (2002) Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Curr Sci 82(5):525–532

    CAS  Google Scholar 

  • Maurel C, Javot H, Lauvergeat V, Gerbeau P, Tournaire C, Santoni V, Heyes J (2002) Molecular physiology of aquaporins in plants. Int Rev Cytol 215:105–148

    Article  CAS  PubMed  Google Scholar 

  • Mazahery-Laghab H, Nouri F, Abianeh HZ (2003) Effects of the reduction of drought stress using supplementary irrigation for sunflower (Helianthus annuus L.) in dry farming conditions. Pajouhesh va Sazandegi Agron Hortic 59:81–86

    Google Scholar 

  • McWilliams D (2003) Drought strategies for cotton, cooperative extension service circular, vol 582. College of Agriculture and Home Economics, New Mexico State University, USA

    Google Scholar 

  • Mittler R, Blumwald E (2010) Genetic engineering for modern agriculture: challenges and perspectives. Annu Rev Plant Biol 61:443–462

    Article  CAS  PubMed  Google Scholar 

  • Miura K, Okamoto H, Okuma E, Shiba H, Kamada H, Hasegawa PM (2013) SIZ1 deficiency causes reduced stomatal aperture and enhanced drought tolerance via controlling salicylic acid-induced accumulation of reactive oxygen species in Arabidopsis. Plant J 49:79–90

    Google Scholar 

  • Moinuddin KHM, Khannu-Chopra R (2004) Osmotic adjustment in chickpea in relation to seed yield and yield parameters. Crop Sci 44:449–455

    Google Scholar 

  • Monneveux P, Sanchez C, Tiessen A (2008) Future progress in drought tolerance in maize needs new secondary traits and cross combinations. J Agric Sci 146:287–300

    Google Scholar 

  • Morgan PW (1990) Effects of abiotic stresses on plant hormone systems. In: Stress responses in plants: adaptation and acclimation mechanisms. Wiley-Liss, Inc., pp 113–146

    Google Scholar 

  • Munne-Bosch S, Penuelas J (2003) Photo- and antioxidative protection, and a role for salicylic acid during drought and recovery in field grown Phillyrea angustifolia plants. Planta 217:758–766

    Article  CAS  PubMed  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Schachtman DP, Condon AG (1995) The significance of a two-phase growth response to salinity in wheat and barley. Aust J Plant Physiol 22:561–569

    CAS  Google Scholar 

  • Nalousi AM, Ahmadiyan S, Hatamzadeh A, Ghasemnezhad M (2012) Protective role of exogenous nitric oxide against oxidative stress induced by salt stress in bell-pepper (Capsicum annum L.). Am-Eurasian J Agric Environ Sci 12(8):1085–1090

    Google Scholar 

  • Nam NH, Chauhan YS, Johansen C (2001) Effect of timing of drought stress on growth and grain yield of extra-short-duration pigeonpea lines. J Agri Sci 136:179–189. https://doi.org/10.1017/S0021859601008607

  • Nayyar H, Kaur S, Singh S, Upadhyaya HD (2006) Differential sensitivity of Desi (small-seeded) and Kabuli (large-seeded) chickpea genotypes to water stress during seed filling: effects on accumulation of seed reserves and yield. J Sci Food Agric 86:2076–2082. https://doi.org/10.1002/jsfa.2574

  • Nguyen HT, Babu RC, Blum A (1997) Breeding for drought resistance in rice: physilogy and molecular genetics considerations. Crop Sci 37:1426–1434

    Article  Google Scholar 

  • Noble CL, Rogers ME (1992) Arguments for the used of physiological criteria for improving the salt tolerance in crops. Plant Physiol 146:99–107

    CAS  Google Scholar 

  • Ogbonnaya CI, Sarr B, Brou C, Diouf O, Diop NN, Roy-Macauley H (2003) Selection of cowpea genotypes in hydroponics, pots, and field for drought tolerance. Crop Sci 43:1114–1120

    Google Scholar 

  • Pandey P, Ramegowda V, Senthil-Kumar M (2015) Shared and unique responses of plants to multiple individual stresses and stress combinations: physiological and molecular mechanisms. Front Plant Sci 6:1–14

    Article  Google Scholar 

  • Parida AK, Das AB, Mohanty P (2004) Investigations on the antioxidative defence responses to NaCl stress in a mangrove, Bruguiera parviflora: differential regulations of isoforms of some antioxidative enzymes. Plant Growth Regul 42(3):213–226

    Article  CAS  Google Scholar 

  • Pessarakli M, Huber J (1991) Biomass production and protein synthesis by alfalfa under salt stress. J Plant Nutrit 14:283–293

    Article  CAS  Google Scholar 

  • Peuke AD, Rennenberg H (2004) Carbon, nitrogen, phosphorus, and sulphur concentration and partitioning in beech ecotypes (Fagus sylvatica L.): phosphorus most affected by drought. Trees 18:639–648

    Article  CAS  Google Scholar 

  • Peuke AD, Hartung W, Schraml C, Rennenberg H (2002) Identification of drought sensitive beech ecotypes by physiological parameters. New Phytol 154:373–388

    Article  CAS  PubMed  Google Scholar 

  • Quintero FJ, Ohta M, Shi H, Zhu J-K, Pardo JM (2002) Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis. Proc Natl Acad USA 99:9061–9066

    Article  CAS  Google Scholar 

  • Rahman S, Miyake H, Takeoka Y (2002) Effects of exogenous glycinebetaine on growth and ultrastructure of salt-stressed rice seedlings (Oryza sativa L.). Plant Prod Sci 5(1): 33–44

    Google Scholar 

  • Rahnama A, James RA, Poustini K, Munns R (2010) Stomatal conductance as a screen for osmotic stress tolerance in durum wheat growing in saline soil. Funct Plant Biol 37(3):255–263

    Article  Google Scholar 

  • Rambla JL, Vera-Sirera F, Blazquez MA, Carbonell J, Granell A (2010) Quantitation of biogenic tetraamines in Arabidopsis thaliana. Anal Biochem 397(2):208–211

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen S, Barah P, Suarez-Rodriguez MC, Bressendorff S, Friis P, Costantino P, Bones AM, Nielsen HB, Mundy J (2013) Transcriptome responses to combinations of stresses in Arabidopsis. Plant Physiol 161:1783–1794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy AR, Chaitanya KV, Vivekanandan M (2004) Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161:1189–1202

    Article  CAS  Google Scholar 

  • Riccardi L, Polignano GB, de Giovanni C (2001) Genotypic response of faba bean to water stress. Euphytica 118:39–46

    Article  Google Scholar 

  • Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S, Mittler R (2004) When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol 134:1683–1696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rozema J, Flowers T (2008) Ecology: crops for a salinized world. Science 322(5907):1478–1480

    Article  CAS  Google Scholar 

  • Samarah NH (2005) Effects of drought stress on growth and yield of barley. Agron Sustain Dev 25(1):145–149

    Google Scholar 

  • Samarah NH, Mullen RE, Cianzio SR, Scott P (2006) Dehydrin-like proteins in soybean seeds in response to drought stress during seed filling. Crop Sci 46:2141–2150. https://doi.org/10.2135/cropsci2006.02.0066

  • Sanders D (2000) Plant biology: the salty tale of Arabidopsis. Curr Biol 10(13):R486–R488

    Article  CAS  PubMed  Google Scholar 

  • Saruhan N, Saglam A, Kadioglu A (2012) Salicylic acid pretreatment induces drought tolerance and delays leaf rolling by inducing antioxidant systems in maize genotypes. Acta Physiol Plant 34:97–106

    Article  CAS  Google Scholar 

  • Saxena SC, Kaur H, Verma P (2013) Osmoprotectants: potential for crop improvement under adverse conditions. Plant acclimation to environmental stress. Springer, New York, NY, USA, pp 197–232

    Chapter  Google Scholar 

  • Scholander PF, Hammel HT, Bradstreet ED, Hemmingsen EA (1965) Sap presuure in vascuar plants. Proc Natl Acad Sci USA 52:119–125

    Article  Google Scholar 

  • Schuppler U, He PH, John PCL, Munns R (1998) Effects of water stress on cell division and cell-division-cycle-2-like cell-cycle kinase activity in wheat leaves. Plant Physiol 117:667–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serraj R, Sinclair TR (2002) Osmolyte accumulation: can it really help increase crop yield under drought conditions? Plant Cell Environ 25:333–341

    Article  PubMed  Google Scholar 

  • Shi H, Quintero FJ, Pardo JM, Zhu JK (2002) The putative plasma membrane Na+/H+ antiporter SOS1 controls longdistance Na+ transport in plants. Plant Cell 14(2):465–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shu S, Guo SR, Yuan LY (2012) A review: polyamines and photosynthesis. In: Najafpour MM (ed) Advances in photosynthesis—fundamental aspects. EdInTech, Rijeka, Croatia, pp 439–464

    Google Scholar 

  • Sinaki JM, Heravan EM, Rad AHS, Noormohammadi G, Zarei G (2007) The effects of water deficit during growth stages of canola (Brassica napus L.). Am Eurasian J Agric Environ Sci 2:417–422

    Google Scholar 

  • Singh B, Usha K (2003) Salicylic acid induced physiological and biochemical changes in wheat seedlings under water stress. Plant Growth Regul 39:137–141

    Article  CAS  Google Scholar 

  • Subbarao GV, Johansen C, Slinkard AE, Rao RCN, Saxena NP, Chauhan YS (1995) Strategies and scope for improving drought resistance in grain legumes. Crit Rev Plant Sci 14:469–523

    Article  Google Scholar 

  • Suzuki N, Rivero RM, Shulaev V, Blumwald E, Mittler R (2014) Abiotic and biotic stress combinations. New Phytol 203:32–43

    Article  PubMed  Google Scholar 

  • Szaboles I (1994) Soils and salinization. In: Pessarakli M (ed) Handbook of plant and crop stress. Marcel Dekker, New York, pp 3–11

    Google Scholar 

  • Tahir MA, Aziz T, Farooq M, Sarwar G (2012) Silicon induced changes in growth, ionic composition, water relations, chlorophyll contents and membrane permeability in two salt stressed wheat genotypes. Arch Agron Soil Sci 58(3):247–256

    Article  CAS  Google Scholar 

  • Taiz L, Zeiger E (2006) Plant Physiol, 4th edn. Sinauer Associates Inc., Publishers, Massachusetts

    Google Scholar 

  • Thomas JC, Sepahi M, Arendall B, Bohnert HJ (1995) Enhancement of seed germination in high salinity by engineering mannitol expression in Arabidopsis thaliana. Plant Cell Environ 18:801–806

    Article  CAS  Google Scholar 

  • Tyerman SD, Niemietz CM, Brameley H (2002) Plant aquaporins: multifunctional water and solute channels with expanding roles. Plant Cell Environ 25:173–194

    Article  CAS  PubMed  Google Scholar 

  • Tyree MT, Patino S, Bennink J, Alexander J (1995) Dynamic measurements of root hydraulic conductance using a high-pressure flowmeter in the laboratory and field. J Exp Bot 46:83–94

    Article  CAS  Google Scholar 

  • Valliyodan B, Nguyen HT (2006) Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr Opin Plant Biol 9:189–195

    Article  CAS  PubMed  Google Scholar 

  • Venuprasad R, Lafitte HR, Atlin GN (2007) Response to direct selection for grain yield under drought stress in rice. Crop Sci 47:285–293

    Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223

    Article  Google Scholar 

  • Wang Y, Nii N (2000) Changes in chlorophyll, ribulose bisphosphate carboxylase-oxygenase, glycine betaine content, photosynthesis and transpiration in Amaranthus tricolor leaves during salt stress. J Hort Sci Biotechnol 75(6):623–627

    Article  CAS  Google Scholar 

  • Wang B, Luttge U, Ratajczak R (2001) Effects of salt treatment and osmotic stress on V-ATPase and V-PPase in leaves of the halophyte Suaeda salsa. J Exp Bot 52:2355–2365

    Article  CAS  PubMed  Google Scholar 

  • Wanjogu SN, Muya EM, Gicheru PT, Waruru BK (2001) Soil degradation: management and rehabilitation in Kenya. In: Proceedings of the FAO/ISCW expert consultation on management of degraded soil in Southern and Eastern Africa (MADS-SEA) 2nd networking meeting, Pretoria, South Africa PR, pp 102–113

    Google Scholar 

  • Xiong J, Fu G, Tao L, Zhu C (2010) Roles of nitric oxide in alleviating heavy metal toxicity in plants. Archiv Biochem Biophys 497:13–20

    Article  CAS  Google Scholar 

  • Yamada M, Morishita H, Urano K, Shiozaki N, Yamaguchi-Shinozaki K, Shinozaki K, Yoshiba Y (2005) Effects of free proline accumulation in petunias under drought stress. J Exp Bot 56:1975–1981

    Article  CAS  PubMed  Google Scholar 

  • Yeo AR, Flowers SA, Rao G, Welfre K, Senanayake N, Flowers TJ (1999) Silicon reduces sodium uptake in rice (Oryza sativa L.) in saline conditions and this is accounted for by a reduction in the transpirational bypass flow. Plant Cell Environ 22:559–565

    Article  CAS  Google Scholar 

  • Yokota A, Kawasaki S, Iwano M, Nakamura C, Miyake C, Akashi K (2002) Citrulline and DRIP-1 protein (ArgE homologue) in drought tolerance of wild watermelon. Ann Bot 89:825–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zandalinas SI, Balfagon D, Arbona V, Gomez-Cadenas A, Inupakutika MA, Mittler R (2016) ABA is required for the accumulation of APX1 and MBF1c during a combination of water deficit and heat stress. J Exp Bot 67:5381–5390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Wang L, Liu Y, Zhang Q, Wei Q, Zhang W (2006) Nitric oxide enhances salt tolerance in maize seedlings through increasing activities of proton-pump and Na+/H+ antiport in the tonoplast. Planta 224(3):545–555

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Wang Y, Yang Y, Wu H, Wang D, Liu J (2007) Involvement of hydrogen peroxide and nitric oxide in salt resistance in the calluses from Populus euphratica. Plant Cell Environ 30(7):775–785

    Article  PubMed  CAS  Google Scholar 

  • Zhao L, Zhang F, Guo J, Yang Y, Li B, Zhang L (2004) Nitric oxide functions as a signal in salt resistance in the calluses from two ecotypes of reed. Plant Physiol 134(2):849–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao MG, Chen L, Zhang LL, Zhang WH (2009) Nitric reductase-dependent nitric oxide production is involved in cold acclimation and freezing tolerance in Arabidopsis. Plant Physiol 151(2):755–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Ann Rev Plant Biol 53:247–273

    Article  CAS  Google Scholar 

  • Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waleed Fouad Abobatta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abobatta, W.F. (2020). Plant Responses and Tolerance to Combined Salt and Drought Stress. In: Hasanuzzaman, M., Tanveer, M. (eds) Salt and Drought Stress Tolerance in Plants. Signaling and Communication in Plants. Springer, Cham. https://doi.org/10.1007/978-3-030-40277-8_2

Download citation

Publish with us

Policies and ethics