Skip to main content
Log in

Mapping of QTLs associated with abscisic acid and water stress in wheat

  • Original Papers
  • Published:
Biologia Plantarum

Abstract

A segregating F4 population from the cross between drought sensitive (Yecora Rojo) and drought tolerant (Pavon 76) genotypes was made to identify molecular markers linked to a wheat (Triticum aestivum L.) abscisic acid (ABA) content at two water regimes. The parents and 150 F4 lines were evaluated phenotypically for drought tolerance using two irrigation treatments [0.25 and 0.75 m3(H2O) m−2(soil)]. Forty different target region amplification polymorphism (TRAP) primer combinations, 98 different sequence-related amplified polymorphism (SRAP) primer combinations, and 400 simple sequence repeat (SSR) primers were tested for polymorphism among the parental genotypes and the F4 lines. Seven loci in the F4 lines treated with the drought stress were identified. Single quantitative trait loci (QTLs) were located on chromosomes 1B, 2A, 3A, 5D, and 7B and each of them explained from 15 to 31 % of phenotypic variance with a LOD value of 7.2 to 15.7. Five QTLs were located on chromosome 4A and six QTLs on chromosome 5A. In control (well-watered) F4 lines, two QTLs were mapped on chromosome 3B and one QTL on each chromosome 5B and 5D. Statistically the most significant groups of QTLs for the ABA content were identified in the regions of chromosomes 3B, 4A, and 5A mostly near to Barc164, Wmc96, and Trap9 markers. Therefore, these markers linked to QTLs for the drought-induced ABA content can be further used in breeding for drought tolerance in wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BSA:

bulk segregant analysis

CIM:

composite interval mapping

LOD:

likelihood ratio

QTL:

quantitative trait locus

RIL:

recombinant inbred line

SSR:

simple sequence repeat

SRAP:

sequence-related amplified polymorphism

TRAP:

target region amplification polymorphism

References

  • Barakat, M.N., Al-Doss, A.A., Moustafa, K.A., Ahmed, E.I., Elshafei, A.A.: Morphological and molecular characterization of Saudi wheat genotypes under drought stress. — J. Food Agr. Environ. 8: 220–228, 2010.

    CAS  Google Scholar 

  • Barakat, M.N., Wahba, L.E., Milad, S.I.: Molecular mapping of QTLs for flag leaf senescence under water stressed conditions in wheat (Triticum aestivum L). — Biol. Plant. 57: 79–84, 2013.

    Article  CAS  Google Scholar 

  • Chandler, P.M., Robertson, M.: Gene expression regulated by abscisic acid and its relation to stress tolerance. — Annu. Rev. Plant Physiol. Plant mol. Biol. 45: 113–141, 1994.

    Article  CAS  Google Scholar 

  • Davies, W.J., Zhang, J.: Root signals and the regulation of growth and development of plants in drying soil. — Annu. Rev. Plant Physiol. Plant mol. Biol. 42: 55–76, 1991.

    Article  CAS  Google Scholar 

  • Dubcovsky, J., Luo, M.C., Dvorák, J.: Linkage relationships among stress-induced genes in wheat. — Theor. appl. Genet. 91: 795–801, 1995.

  • Elshafei, A.A., Saleh, M.S., Al-Doss, A.A., Moustafa, K.A., Al-Qurainy, F.H., Barakat, M.N.: Identification of new SRAP markers linked to leaf chlorophyll content, flag leaf senescence and cell membrane stability traits in wheat under water-stress condition. — Aust. J. Crop Sci. 7: 887–893, 2013.

    CAS  Google Scholar 

  • Golabadi, M., Arzani, A., Maibody, S.M., Tabatabaei, B.S., Mohammadi, S.A.: Identification of microsatellite markers linked with yield components under drought stress at terminal growth stages in durum wheat. — Euphytica 177: 207–221, 2011.

    Article  Google Scholar 

  • Gupta, P., Balyan, H., Edwards, K., Isaac, P., Korzun, V., Röder, M. Leroy, P.: Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat. — Theor. appl. Genet. 105: 413–422, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Hu, J., Vick, B.A.: Target region amplification polymorphism: a novel marker technique for plant genotyping. — Plant mol. Biol. Rep. 21: 289–294, 2003.

    Article  CAS  Google Scholar 

  • Iuchi, S., Kobayashi, M., Taji, T., Naramoto, M., Seki, M., Kato, T., Tabata, S., Kakubari, Y., Qin, X.Q., Zeevaart, J.A.D.: Overexpression of a 9-cis-epoxycarotenoiddioxygenase gene in Nicotiana plumbaginifolia increases abscisic acid and phaseic acid levels and enhances drought tolerance. — Plant Physiol. 128: 544–551, 2002.

    Article  Google Scholar 

  • Kobayashi, F., Takumi, S., Handa, H.: Identification of quantitative trait loci for ABA responsiveness at seedling stage associated with ABA-regulated gene expression in common wheat. — Theor. appl. Genet. 121: 629–641, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Krochko, J.E., Abrams, G.D., Loewen, M.K., Abrams, S.R., Cutler, A.: (+)-abscisic acid 80-hydroxylase is a cytochrome P450 monooxygenase. — Plant Physiol. 118: 849–860, 1998.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lebreton, C., Lazic-Jancic, V., Steed, A., Pekic, S., Quarrie, S.A.: Identification of QTLs for drought responses in maize and their use in testing causal relationships between traits. — J. exp. Bot. 46: 853–865, 1995.

    Article  CAS  Google Scholar 

  • Li, G., Quiros, C.F.: Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. — Theor. appl. Genet. 103: 455–461, 2001.

    Article  CAS  Google Scholar 

  • Li, S.S., Jia, J.Z., Wei, X.Y., Zhang, X.C., Li, L.Z., Chen, H.M., Fan, Y.D., Sun, H.Y., Zhao, X.H., Lei, T.D., Xu, Y.F., Jiang, F.S., Wang, H.G., Li, L.H.: A intervarietal genetic map and QTL analysis for yield traits in wheat. — Mol. Breed. 20: 167–178, 2007.

    Article  Google Scholar 

  • McWilliam, J.: The dimensions of drought. — In: Baker, F.W.G. (ed.): Drought Resistance in Cereals. Pp. 1–11. CAB International, Wallingford 1989.

    Google Scholar 

  • Muthurajan, R., Shobbar, Z.S., Jagadish, S.V.K., Bruskiewich, R., Ismail, A., Leung, H., Bennett, J.: Physiological and proteomic responses of rice peduncles to drought stress. — Mol. Biotechnol. 48: 173–182, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Nelson, J.C.: QGENE: software for marker-based genomic analysis and breeding. — Mol. Breed. 3: 239–245, 1997.

    Article  CAS  Google Scholar 

  • Quarrie, S.A., Gulli, M., Calestani, C., Steed, A., Marmiroli, N.: Localization of drought-induced abscisic acid production on the long arm of chromosome 5 A of wheat. — Theor. appl. Genet. 89: 794–800, 1994.

    Article  CAS  PubMed  Google Scholar 

  • Quarrie, S.A., Laurie, D.A., Zhu, J., Lebreton, C., Semikhodskii, A., Steed, A., Witsenboer, H., Calestani, C.: QTL analysis to study the association between leaf size and abscisic acid accumulation in droughted rice leaves and comparisons across cereals. — Plant mol. Biol. 35: 155–165, 1997.

    Article  CAS  PubMed  Google Scholar 

  • Röder, M.S., Korzun, V., Gill, B.S., Ganal, M.W.: The physical mapping of microsatellite markers in wheat. — Genome 41: 278–283, 1998.

    Article  Google Scholar 

  • Saeedipour, S., Moradi, F.: Relationship of endogenous ABA and IAA to accumulation of grain protein and starch in two winter wheat cultivars under post-anthesis water deficit. — J. agr. Sci. 4: 147–156, 2012.

    Google Scholar 

  • Saghai-Maroof, M.A., Soliman, K.M., Jorgensen, R.A., Allard, R.W.: Ribosomal DNA spacer-length polymorphism in barley: Mendelian inheritance, chromosomal location, and population dynamics. — Proc. nat. Acad. Sci. USA 81: 8014–8018, 1984.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Saleh, M.S., Al-Doss, A.A., Elshafei, A.A., Moustafa, K.A., Al-Qurainy, F.H., Barakat, M.N.: Identification of new TRAP markers linked to leaf chlorophyll content, flag leaf senescence and cell membrane stability traits in wheat under water-stress conditions. — Biol. Plant. 58: 64–70, 2014.

    Article  CAS  Google Scholar 

  • Sanguineti, M.C., Tuberosa, R., Landi, P., Salvi, S., Maccaferri, M., Casarini, E., Conti, S.: QTL analysis of drought-related traits and grain yield in relation to genetic variation for leaf abscisic acid concentration in field-grown maize. — J. exp. Bot. 50: 1289–1297, 1999.

    Article  CAS  Google Scholar 

  • Song, Q., Shi, J., Singh, S., Fickus, E., Costa, J., Lewis, J., Cregan, P.: Development and mapping of microsatellite (SSR) markers in wheat. — Theor. appl. Genet. 110: 550–560, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Steel, R.G., Torrie, J.H.: Principles and Procedures of Statistics, a Biometrical Approach. — McGraw-Hill, Kogakusha 1980.

    Google Scholar 

  • Thompson, D.S., Wilkinson, S., Bacon, M.A., Davies, W.J.: Multiple signals and mechanisms that regulate leaf growth and stomatal behavior during water deficit. — Physiol. Plant. 100: 303–313, 1997.

  • Tuberosa, R., Sanguineti, M.C., Landi, P., Salvi, S., Casarini, E., Conti, S.: RFLP mapping of quantitative trait loci controlling abscisic acid concentration in leaves of droughtstressed maize (Zea mays L.). — Theor. appl. Genet. 97: 744–755, 1998.

    Article  CAS  Google Scholar 

  • You, J., Li, Q., Yue, B., Xue, W.-Y., Luo, L.-J., Xiong, L.-Z.: Identification of quantitative trait loci for ABA sensitivity at seed germination and seedling stages in rice. — Acta genet. sin. 33: 532–541, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Ünyayar, S., Keles, Y., Ünal, E.: Proline and ABA levels in two sunflower genotypes subjected to water stress. — Bulg. J. Plant Physiol. 30: 34–47, 2004.

    Google Scholar 

  • Zeevaart, J.A.D., Creelman, R.A.: Metabolism and physiology of abscisic acid. — Annu. Rev. Plant Physiol. Plant mol. Biol. 39: 439–473, 1988.

    Article  CAS  Google Scholar 

  • Zhu, J.K.: Salt and drougtht stress signal transduction in plants. — Annu. Rev. Plant Biol. 53: 247–273, 2002.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Żur, I., Krzewska, M., Dubas, E., Gołębiowska-Pikania, G., Janowiak, F., Stojałowski, S.: Molecular mapping of loci associated with abscisic acid accumulation in triticale (×Triticosecale Wittm.) anthers in response to low temperature stress inducing androgenic development. — Plant Growth Regul. 68: 483–492, 2012.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Barakat.

Additional information

Acknowledgements: The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding the work through the research group project no. RGPVPP-161.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barakat, M.N., Saleh, M.S., Al-Doss, A.A. et al. Mapping of QTLs associated with abscisic acid and water stress in wheat. Biol Plant 59, 291–297 (2015). https://doi.org/10.1007/s10535-015-0499-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-015-0499-9

Additional key words

Navigation