Skip to main content
Log in

Modeling and dynamics characteristics analysis of six-bar rocking feeding mechanism with lubricated clearance joint

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

To research the dynamic response characteristics of the multi-link complex mechanism with lubricated clearance joint, an improved transitional lubrication model considering the roughness of the contact surface is established based on the fuzzy set model of the lubrication state. The dynamic model of a six-bar rocking feeding mechanism with lubricated clearance joint is established, and the influence of dry friction clearance and lubricated clearance on the dynamic response of the mechanism are analyzed. By comparing with the simulation results of ADAMS and Flores lubrication model, the correctness and effectiveness of the established dynamic model and the improved transition lubrication model are verified. The influence of driving speed, clearance size and number of clearances on the dynamic response of the mechanism with lubricated clearance joint is mainly studied. The simulation results show that the driving speed, clearance size and number of clearances have an impact on the dynamic characteristics of the mechanism. With the increase of driving speed and clearance value, the greater the impact on the mechanism, the increase in the number of clearances, which reduces the stability of the mechanism, and there is interaction between different clearance joints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

References

  1. Luka, S., Janko, S., Miha, B.: A review of continuous contact-force models in multibody dynamics. Int. J. Mech. Sci. 145, 171–187 (2018)

    Article  Google Scholar 

  2. Tian, Q., Flores, P., Lankarani, H.M.: A comprehensive survey of the analytical, numerical and experimental methodologies for dynamics of multibody mechanical systems with clearance or imperfect joints. Mech. Mach. Theory 122, 1–57 (2018)

    Article  Google Scholar 

  3. Liu, J.H., Zhang, F.K., Ding, X.Y.: Study on the evolution of real contact area between elastic-plastic rough surfaces. J. Mech. Eng. 57(7), 109–116 (2021)

    Article  Google Scholar 

  4. Zheng, E.L., Chu, L., Jiang, S.Y., Zhu, S.Q., Kang, M., Shi, J.F.: Multi-body dynamic modeling and error analysis of planar flexible multi-link mechanism with lubricated revolute clearance joints and crankshaft-bearing structure. J. Mech. Eng. 56(3), 106–120 (2020)

    Article  Google Scholar 

  5. Zheng, E.L., Wang, T.Y., Guo, J., Zhu, Y., Lin, X.Z., Wang, Y.J., Kang, M.: Dynamic modeling and error analysis of planar flexible multilink mechanism with clearance and spindle-bearing structure. Mech. Mach. Theory 131, 234–260 (2019)

    Article  Google Scholar 

  6. Zheng, E.L., Zhu, R., Zhu, S.H., Lu, X.J.: A study on dynamics of flexible multi-link mechanism including joints with clearance and lubrication for ultra-precision presses. Nonlinear Dyn. 83(1–2), 137–159 (2016)

    Article  MathSciNet  Google Scholar 

  7. Flores, P.: A parametric study on the dynamic response of planar multibody systems with multiple clearance joints. Nonlinear Dyn. 61(4), 633–653 (2010)

    Article  MATH  Google Scholar 

  8. Flores, P., Koshy, C.S., Lankarani, H.M., Ambrósio, J., Claro, J.C.P.: Numerical and experimental investigation on multibody systems with revolute clearance joints. Nonlinear Dyn. 65(4), 383–398 (2011)

    Article  Google Scholar 

  9. Flores, P.: Modeling and simulation of wear in revolute clearance joints in multibody systems. Mech. Mach. Theory 44(6), 1211–1222 (2009)

    Article  MATH  Google Scholar 

  10. Farahan, S.B., Ghazavi, M.R., Rahmanian, S.: Bifurcation in a planar four-bar mechanism with revolute clearance joint. Nonlinear Dyn. 87(2), 955–973 (2017)

    Article  Google Scholar 

  11. Xiang, W.W.K., Yan, S.Z., Wu, J.N., Gao, R.X.: Complexity evaluation of nonlinear dynamic behavior of mechanisms with clearance joints by using the fractal method. ARCHIVE Proc. Inst. Mech Eng. Part C 228(18), 3482–3495 (2014)

    Article  Google Scholar 

  12. Chen, Y., Wu, K., Wu, X.Z., Sun, Y., Zhong, T.S.: Kinematic accuracy and nonlinear dynamics of a flexible slider-crank mechanism with multiple clearance joints. Eur. J. Mech. /A Solids. 88, 1–20 (2021)

    MathSciNet  MATH  Google Scholar 

  13. Wang, G., Qi, Z.H., Wang, J.: A differential approach for modeling revolute clearance joints in planar rigid multibody systems. Multibody Sys.Dyn. 39(4), 311–335 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Erkaya, S., Uzmay, I.: Effects of balancing and link flexibility on dynamics of a planar mechanism having joint clearance. Scientia Iranica. 19(3), 483–490 (2012)

    Article  Google Scholar 

  15. Flores, P., Ambrósio, J., Claro, J.C.P., Lankarani, H.M., Koshy, C.S.: A study on dynamics of mechanical systems including joints with clearance and lubrication. Mech. Mach. Theory 41(3), 247–261 (2006)

    Article  MATH  Google Scholar 

  16. Flores, P.: Dynamic analysis of mechanical systems with imperfect kinematic joints. Portugal: Universidade Do Minho Ph. D thesis. (2004)

  17. Flores, P., Lankarani, H.M., Ambrósio, J., Claro, J.C.P.: Modelling lubricated revolute joints in multibody mechanical systems. Proc. Inst. Mech. Eng. Part K 218(4), 183–190 (2004)

    MATH  Google Scholar 

  18. Flores, P., Ambrósio, J., Claro, J.C.P., Lankarani, H.M., Koshy, C.S.: Lubricated revolute joints in rigid multibody systems. Nonlinear Dyn. 56(3), 277–295 (2009)

    Article  MATH  Google Scholar 

  19. Flores, P., Lankarani, H.M.: Spatial rigid-multibody systems with lubricated spherical clearance joints: modeling and simulation. Nonlinear Dyn. 60(1), 99–114 (2010)

    Article  MATH  Google Scholar 

  20. Chen, X.L., Wang, T., Jiang, S.: Study on dynamic behavior of planar multibody system with multiple lubrication clearance joints. Eur. J. Mech. / A Solids 91(2022), 1–17 (2021)

    MathSciNet  Google Scholar 

  21. Chen, X.L., Shuai, J., Yu, D., Wang, Q.: Dynamics analysis of 2-DOF complex planar mechanical system with joint clearance and flexible links. Nonlinear Dyn. 93(1), 1–26 (2018)

    Article  Google Scholar 

  22. Tian, Q., Zhang, Y.Q., Chen, L.P., Yang, J.Z.: Simulation of planar flexible multibody systems with clearance and lubricated revolute joints. Nonlinear Dyn. 60(4), 489–511 (2010)

    Article  MATH  Google Scholar 

  23. Tian, Q., Liu, C., Machado, M., Flores, P.: A new model for dry and lubricated cylindrical joints with clearance in spatial flexible multibody systems. Nonlinear Dyn. 64(1–2), 25–47 (2011)

    Article  MATH  Google Scholar 

  24. Tian, Q., Sun, Y.L., Liu, C., Hu, H.Y., Flores, P.: ElastoHydroDynamic lubricated cylindrical joints for rigid-flexible multibody dynamics. Comput. Struct. 114–115, 106–120 (2013)

    Article  Google Scholar 

  25. Zhao, B., Zhang, Z.N., Fang, C.C., Dai, X.D., Xie, Y.B.: Modeling and analysis of planar multibody system with mixed lubricated revolute joint. Tribol. Int. 98, 229–241 (2016)

    Article  Google Scholar 

  26. Zhao, B., Zhou, K., Xie, Y.B.: A new numerical method for planar multibody system with mixed lubricated revolute joint. Int. J. Mech. Sci. 113, 105–119 (2016)

    Article  Google Scholar 

  27. Zhao, B., Dai, X.D., Zhang, Z.N., Xie, Y.B.: A new numerical method for piston dynamics and lubrication analysis. Tribol. Int. 94, 395–408 (2016)

    Article  Google Scholar 

  28. Zhang, T., Liu, G., Wang, X.P., Ma, S.J.: Dynamic analysis of planar multibody system with a lubricated revolute clearance joint using an improved transition force model. Adv. Mech. Eng. 9(12), 1–15 (2017)

    Article  Google Scholar 

  29. Machado, M., Costa, J., Seabra, E., Flores, P.: The effect of the lubricated revolute joint parameters and hydrodynamic force models on the dynamic response of planar multibody systems. Nonlinear Dyn. 69(1–2), 635–654 (2012)

    Article  Google Scholar 

  30. Reis, V.L., Daniel, G.B., Cavalca, K.L.: Dynamic analysis of a lubricated planar slider–crank mechanism considering friction and Hertz contact effects. Mech. Mach. Theory 74(6), 257–273 (2014)

    Article  Google Scholar 

  31. Fang, C.C., Meng, X.H., Lu, Z.J., Wu, G., Tang, D.H., Zhao, B.: Modeling a lubricated full-floating pin bearing in planar multibody systems. Tribol. Int. 131, 222–237 (2019)

    Article  Google Scholar 

  32. Li, R., Meng, X.H., Liu, R.C., Muhammad, R., Li, W.D., Dong, J.J.: Crosshead bearing analysis for low-speed marine diesel engines based on a multi-body tribo-dynamic model. Int. J. Engine Res. 22(8), 1–22 (2020)

    Google Scholar 

  33. Hori, Y.: Hydrodynamic Lubrication. Springer, Tokyo (2006)

    MATH  Google Scholar 

  34. Flores, P., Ambrósio, J., Claro, J.P.: Dynamic analysis for planar multibody mechanical systems with lubricated joints. Multibody Sys.Dyn. 12(1), 47–74 (2004)

    Article  MATH  Google Scholar 

  35. Li, P., Chen, W., Li, D., Yu, R.F.: A novel transition model for lubricated revolute joints in planar multibody systems. Multibody Sys.Dyn. 36(3), 279–294 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. Azam, A., Dorgham, A., Morina, A., Neville, A., Wilson, M.C.T.: A simple deterministic plastoelastohydrodynamic lubrication (PEHL) model in mixed lubrication. Tribol. Int. 131, 520–529 (2018)

    Article  Google Scholar 

  37. Liu, S., Cui, Y., Fu, Y., Li, B., Lv, B.L., Qian, Y.H.: Modeling of lubricated translational joints in rigid-partially flexible multibody systems and its application in two-stroke marine diesel engines. Tribol. Int. 165, 1–14 (2022)

    Article  Google Scholar 

  38. Daniel, G.B., Machado, T.H., Cavalca, K.L.: Investigation on the influence of the cavitation boundaries on the dynamic behavior of planar mechanical systems with hydrodynamic bearings. Mech. Mach. Theory 99, 19–36 (2016)

    Article  Google Scholar 

  39. Marques, F., Flores, P., Claro, J.C.P., Lankarani, H.M.: A survey and comparison of several friction force models for dynamic analysis of multibody mechanical systems. Nonlinear Dyn. 86(3), 1407–1443 (2016)

    Article  MathSciNet  Google Scholar 

  40. Phelan, R.M.: Fundamentals of Mechanical Design. Mc Graw-Hill, New York (1970)

    Google Scholar 

  41. Luo, J.B., Yan, C.N.: On the fuzzy view in the lubriction theory. Lubr. Eng. 4, 1–4 (1989)

    Google Scholar 

  42. Hamrock, B.J.: Fundamentals of fluid Film Lubrication. Mc Graw Hill, New York (1994)

    Google Scholar 

  43. Kodnir, D.S., Zhilnikov, E.P.: An investigation in the field of elastohydrodynamics. J. Tribol. 98(4), 491–499 (1976)

    Google Scholar 

  44. Podra, P., Andersson, S.: Wear simulation with the Winkler surface model. Wear 207(1), 79–85 (1997)

    Article  Google Scholar 

  45. Conway, H.D., Lee, H.C.: The analysis of the lubrication of a flexible journal bearing. J. Tribol. 94(4), 599–604 (1975)

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge foundation item: Innovative Research Team in University of Tianjin (No. TD13-5037), and Natural Science Foundation of China (No. 51475330, No. 52005368 and No. 52175243) for supporting the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoguang Jin.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Kinematic analysis

According to Fig. 5b, dynamic modeling of the mechanism

$$\left[ {\begin{array}{*{20}c} {x_{1} } \\ {y_{1} } \\ \end{array} } \right] = \frac{{l_{1} }}{2}\left[ {\begin{array}{*{20}c} {\cos \theta_{1} } \\ {\sin \theta_{1} } \\ \end{array} } \right]$$
(33)
$$\left[ {\begin{array}{*{20}c} {x_{2} } \\ {y_{2} } \\ \end{array} } \right] = l_{1} \left[ {\begin{array}{*{20}c} {\cos \theta_{1} } \\ {\sin \theta_{1} } \\ \end{array} } \right] + \frac{{l_{2} }}{2}\left[ {\begin{array}{*{20}c} {\cos \theta_{2} } \\ {\sin \theta_{2} } \\ \end{array} } \right]$$
(34)
$$\left[ {\begin{array}{*{20}c} {x_{3} } \\ {y_{3} } \\ \end{array} } \right] = l_{1} \left[ {\begin{array}{*{20}c} {\cos \theta_{1} } \\ {\sin \theta_{1} } \\ \end{array} } \right] + l_{2} \left[ {\begin{array}{*{20}c} {\cos \theta_{2} } \\ {\sin \theta_{2} } \\ \end{array} } \right]$$
(35)
$$\left[ {\begin{array}{*{20}c} {x_{4} } \\ {y_{4} } \\ \end{array} } \right] = l_{1} \left[ {\begin{array}{*{20}c} {\cos \theta_{1} } \\ {\sin \theta_{1} } \\ \end{array} } \right] + l_{2} \left[ {\begin{array}{*{20}c} {\cos \theta_{2} } \\ {\sin \theta_{2} } \\ \end{array} } \right] + l_{CE} \left[ {\begin{array}{*{20}c} {\cos \theta_{3} } \\ {\sin \theta_{3} } \\ \end{array} } \right] + \frac{{l_{4} }}{2}\left[ {\begin{array}{*{20}c} {\cos \theta_{4} } \\ {\sin \theta_{4} } \\ \end{array} } \right]$$
(36)
$$x_{5} = l_{1} \cos \theta_{1} + l_{2} \cos \theta_{2} + l_{CE} \cos \theta_{3} + l_{4} \cos \theta_{4}$$
(37)

where \(x_{i}\) and \(y_{i} \left( {i = 1,2,3,4} \right)\) are the displacements in the x-direction and y-direction at the center of mass of the i-th rod respectively, \(\theta_{1}\) is the angle of crank 1, \(\theta_{2}\) is the angle of connecting rod 2, \(\theta_{3}\) is the angle of rocker 3, \(\theta_{4}\) is the angle of connecting rod 4, \(l_{CE}\) is the length from joint C to joint E, \(l_{CD}\) is the length from joint C to joint D, \(x_{5}\) is the displacement of the slider 5, \(l_{a}\) is the vertical distance from joint A to joint D, the length is 90 mm, \(l_{b}\) is the horizontal distance from joint A to joint D, the length is 170 mm.

By calculating the second derivative of Eqs. (33) to (37), the acceleration and angular acceleration of each bar parameter can be obtained

$$\left[ {\begin{array}{*{20}c} {\ddot{x}_{1} } \\ {\ddot{y}_{1} } \\ \end{array} } \right] = - \frac{{l_{1} }}{2}\left[ {\begin{array}{*{20}c} {\cos \theta_{1} } \\ {\sin \theta_{1} } \\ \end{array} } \right]\dot{\theta }_{1}^{2}$$
(38)
$$\left[ {\begin{array}{*{20}c} {\ddot{x}_{2} } \\ {\ddot{y}_{2} } \\ \end{array} } \right] = - l_{1} \left[ {\begin{array}{*{20}c} {\cos \theta_{1} } \\ {\sin \theta_{1} } \\ \end{array} } \right]\dot{\theta }_{1}^{2} - \frac{{l_{2} }}{2}\left[ {\begin{array}{*{20}c} {\cos \theta_{2} } \\ {\sin \theta_{2} } \\ \end{array} } \right]\dot{\theta }_{2}^{2} + \frac{{l_{2} }}{2}\left[ {\begin{array}{*{20}c} { - \sin \theta_{2} } \\ {\cos \theta_{2} } \\ \end{array} } \right]\ddot{\theta }_{2}$$
(39)
$$\left[ {\begin{array}{*{20}c} {\ddot{x}_{3} } \\ {\ddot{y}_{3} } \\ \end{array} } \right] = - l_{1} \left[ {\begin{array}{*{20}c} {\cos \theta_{1} } \\ {\sin \theta_{1} } \\ \end{array} } \right]\dot{\theta }_{1}^{2} - l_{2} \left[ {\begin{array}{*{20}c} {\cos \theta_{2} } \\ {\sin \theta_{2} } \\ \end{array} } \right]\dot{\theta }_{2}^{2} + l_{2} \left[ {\begin{array}{*{20}c} { - \sin \theta_{2} } \\ {\cos \theta_{2} } \\ \end{array} } \right]\ddot{\theta }_{2}$$
(40)
$$\begin{gathered} \left[ {\begin{array}{*{20}c} {\ddot{x}_{4} } \\ {\ddot{y}_{4} } \\ \end{array} } \right] = - l_{1} \left[ {\begin{array}{*{20}c} {\cos \theta_{1} } \\ {\sin \theta_{1} } \\ \end{array} } \right]\dot{\theta }_{1}^{2} - l_{2} \left[ {\begin{array}{*{20}c} {\cos \theta_{2} } \\ {\sin \theta_{2} } \\ \end{array} } \right]\dot{\theta }_{2}^{2} + l_{2} \left[ {\begin{array}{*{20}c} { - \sin \theta_{2} } \\ {\cos \theta_{2} } \\ \end{array} } \right]\ddot{\theta }_{2} \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} - l_{CE} \left[ {\begin{array}{*{20}c} {\cos \theta_{3} } \\ {\sin \theta_{3} } \\ \end{array} } \right]\dot{\theta }_{3}^{2} + l_{CE} \left[ {\begin{array}{*{20}c} { - \sin \theta_{3} } \\ {\cos \theta_{3} } \\ \end{array} } \right]\ddot{\theta }_{3} - \frac{{l_{4} }}{2}\left[ {\begin{array}{*{20}c} {\cos \theta_{4} } \\ {\sin \theta_{4} } \\ \end{array} } \right]\dot{\theta }_{4}^{2} + \frac{{l_{4} }}{2}\left[ {\begin{array}{*{20}c} { - \sin \theta_{4} } \\ {\cos \theta_{4} } \\ \end{array} } \right]\ddot{\theta }_{4} \hfill \\ \end{gathered}$$
(41)
$$\begin{gathered} \ddot{x}_{5} = - l_{1} \cos \theta_{1} \dot{\theta }_{1}^{2} - l_{2} \cos \theta_{2} \dot{\theta }_{2}^{2} - l_{2} \sin \theta_{2} \ddot{\theta }_{2} - l_{CE} \cos \theta_{3} \dot{\theta }_{3}^{2} - l_{CE} \sin \theta_{3} \ddot{\theta }_{3} \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} - l_{4} \cos \theta_{4} \dot{\theta }_{4}^{2} - l_{4} \sin \theta_{4} \ddot{\theta }_{4} \hfill \\ \end{gathered}$$
(42)

where \(\ddot{x}_{i}\) and \(\ddot{y}_{i} \left( {i = 1,2,3,4} \right)\) are the x-direction and y-direction accelerations at the center of mass of the i-th rod respectively, \(\dot{\theta }_{i}\) and \(\ddot{\theta }_{i} \left( {i = 1,2,3,4} \right)\) are the angular velocity and angular acceleration of the i-th rod respectively, \(\ddot{x}_{5}\) is the acceleration of the slider.

Appendix 2: Force analysis

The force analysis of crank 1

$$\left\{ {\begin{array}{*{20}l} { - F_{21x} + F_{61x} = m_{1} \ddot{x}_{1} } \\ { - F_{21y} + F_{61y} = G_{1} + m_{1} \ddot{y}_{1} } \\ {M_{b} - F_{21x} l_{1} \sin \theta_{1} + F_{21y} l_{1} \cos \theta_{1} - m_{1} g\frac{{l_{1} }}{2}\cos \theta_{1} = \left( {J_{1} + \frac{1}{2}m_{1} l_{1}^{2} } \right)\ddot{\theta }_{1} } \\ \end{array} } \right.$$
(43)

The force analysis of connecting rod 2

$$\left\{ {\begin{array}{*{20}l} {F_{21x} - F_{32x} = m_{2} \ddot{x}_{2} } \\ {F_{21y} - F_{32y} = G_{2} + m_{2} \ddot{y}_{2} } \\ {F_{21x} \frac{{l_{2} }}{2}\sin \theta_{2} - F_{21y} \frac{{l_{2} }}{2}\cos \theta_{2} - F_{32x} \frac{{l_{2} }}{2}\sin \theta_{2} + F_{32y} \frac{{l_{2} }}{2}\cos \theta_{2} = J_{2} \ddot{\theta }_{2} } \\ \end{array} } \right.$$
(44)

The force analysis of rocker 3

$$\left\{ {\begin{array}{*{20}l} {F_{32x} - F_{43x} + F_{63x} = m_{3} \ddot{x}_{3} } \\ {F_{32y} - F_{43y} + F_{63y} = G_{3} + m_{3} \ddot{y}_{3} } \\ {F_{43y} l_{CE} \cos \theta_{3} - F_{43x} l_{CE} \sin \theta_{3} + F_{63x} l_{CD} \sin \theta_{3} - F_{63y} l_{CD} \cos \theta_{3} = J_{3} \ddot{\theta }_{3} } \\ \end{array} } \right.$$
(45)

The force analysis of connecting rod 4

$$\left\{ {\begin{array}{*{20}l} {F_{43x} - F_{x} = m_{4} \ddot{x}_{4} } \\ {F_{43y} - F_{y} = G_{4} + m_{4} \ddot{y}_{4} } \\ {F_{x} \left( {\frac{{l_{4} }}{2}\sin \theta_{4} + R_{i} \sin \gamma } \right) + F_{y} \left( {\frac{{l_{4} }}{2}\cos \theta_{4} + R_{i} \cos \gamma } \right) - F_{43x} \frac{{l_{4} }}{2}\sin \theta_{4} - F_{43y} \frac{{l_{4} }}{2}\cos \theta_{4} = J_{4} \ddot{\theta }_{4} } \\ \end{array} } \right.$$
(46)

The force analysis of slider 5

$$F_{x} = m_{5} \ddot{x}_{5}$$
(47)

in Eqs. (43) to (47), \(F_{{i\left( {i - 1} \right)x}}\) and \(F_{{i\left( {i - 1} \right)y}} \left( {i = 2,3,4} \right)\) are the force components of the B, C and E joints, respectively, \(F_{61}\) and \(F_{63}\) are the acting forces of the support on the crank 1 and rocker 3, respectively, \(J_{1}\), \(J_{2}\), \(J_{3}\) and \(J_{4}\) are the moments of inertia of each member to its center of mass respectively. \(m_{i} \left( {i = 1,2,3,4} \right)\) is the mass of each component respectively, \(G_{i} \left( {i = 1,2,3,4} \right)\) is the gravity of each component respectively, \(\omega_{b}\) is the crank speed, \(M_{b}\) is the crank moment.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, G., Wang, Z., Liang, D. et al. Modeling and dynamics characteristics analysis of six-bar rocking feeding mechanism with lubricated clearance joint. Arch Appl Mech 93, 2831–2854 (2023). https://doi.org/10.1007/s00419-023-02410-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-023-02410-7

Keywords

Navigation