Skip to main content

Advertisement

Log in

Fractional crystallization of high-K arc magmas: biotite- versus amphibole-dominated fractionation series in the Dariv Igneous Complex, Western Mongolia

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Many studies have documented hydrous fractionation of calc-alkaline basalts producing tonalitic, granodioritic, and granitic melts, but the origin of more alkaline arc sequences dominated by high-K monzonitic suites has not been thoroughly investigated. This study presents results from a combined field, petrologic, and whole-rock geochemical study of a paleo-arc alkaline fractionation sequence from the Dariv Range of the Mongolian Altaids. The Dariv Igneous Complex of Western Mongolia is composed of a complete, moderately hydrous, alkaline fractionation sequence ranging from phlogopite-bearing ultramafic and mafic cumulates to quartz–monzonites to late-stage felsic (63–75 wt% SiO2) dikes. A volumetrically subordinate more hydrous, amphibole-dominated fractionation sequence is also present and comprises amphibole (±phlogopite) clinopyroxenites, gabbros, and diorites. We present 168 whole-rock analyses for the biotite- and amphibole-dominated series. First, we constrain the liquid line of descent (LLD) of a primitive, alkaline arc melt characterized by biotite as the dominant hydrous phase through a fractionation model that incorporates the stepwise subtraction of cumulates of a fixed composition. The modeled LLD reproduces the geochemical trends observed in the “liquid-like” intrusives of the biotite series (quartz–monzonites and felsic dikes) and follows the water-undersaturated albite–orthoclase cotectic (at 0.2–0.5 GPa). Second, as distinct biotite- and amphibole-dominated fractionation series are observed, we investigate the controls on high-temperature biotite versus amphibole crystallization from hydrous arc melts. Analysis of a compilation of hydrous experimental starting materials and high-Mg basalts saturated in biotite and/or amphibole suggests that the degree of K enrichment controls whether biotite will crystallize as an early high-T phase, whereas the degree of water saturation is the dominant control of amphibole crystallization. Therefore, if a melt has the appropriate major-element composition for early biotite and amphibole crystallization, as is true of the high-Mg basalts from the Dariv Igneous Complex, the relative proximity of these two phases to the liquidus depends on the H2O concentration in the melt. Third, we compare the modeled high-K LLD and whole-rock geochemistry of the Dariv Igneous Complex to the more common calc-alkaline trend. Biotite and K-feldspar fractionation in the alkaline arc series results in the moderation of K2O/Na2O values and LILE concentrations with increasing SiO2 as compared to the more common calc-alkaline series characterized by amphibole and plagioclase crystallization and strong increases in K2O/Na2O values. Lastly, we suggest that common calc-alkaline parental melts involve addition of a moderate pressure, sodic, fluid-dominated slab component while more alkaline primitive melts characterized by early biotite saturation involve the addition of a high-pressure potassic sediment melt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Throughout the text, we use “phlogopite” when describing biotite in ultramafic lithologies and “biotite” when describing biotite in feldspar-bearing lithologies.

  2. Note that the errors of the Al-in-hornblende pressures of Table 2 in Bucholz et al. (2014) were reproduced incorrectly, the correct values are 0.15 ± 0.08, 0.21 ± 0.05, 0.20 ± 0.10, 0.24 ± 0.05, 0.15 ± 0.02, and 0.34 ± 0.02 GPa.

References

  • Allan JF & Carmichael ISE (1984) Lamprophyric lavas in the Colima graben, SW Mexico. Contrib Mineral Petrol 88(3):203–216

  • Alonso-Perez R, Müntener O, Ulmer P (2009) Igneous garnet and amphibole fractionation in the roots of island arcs: experimental constraints on H2O undersaturated andesitic liquids. Contrib Mineral Petrol 157:541–558

    Article  Google Scholar 

  • Annen C, Blundy JD, Sparks RSJ (2006) The genesis of intermediate and silicic magmas in deep crustal hot zones. J Petrol 47(3):505–539

    Article  Google Scholar 

  • Arai S (1994) Characterization of spinel peridotites by olivine–spinel compositional relationships: review and interpretation. Chem Geol 113(3):191–204

    Article  Google Scholar 

  • Badarch G, Cunningham WD, Windley BF (2002) A new terrane subdivision for Mongolia: implications for the Phanerozoic crustal growth of Central Asia. J Asian Earth Sci 21(1):87–110

    Article  Google Scholar 

  • Barclay J, Carmichael I (2004) A hornblende basalt from western Mexico: water-saturated phase relations constrain a pressure, temperature window of eruptibility. J Petrol 45(3):485–506

    Article  Google Scholar 

  • Barth MG, McDonough WF, Rudnick RL (2000) Tracking the budget of Nb and Ta in the continental crust. Chem Geol 165(3):197–213

    Article  Google Scholar 

  • Barton M, Hamilton D (1978) Water-saturated melting relations to 5 kilobars of three Leucite Hills lavas. Contrib Mineral Petrol 66(1):41–49

    Article  Google Scholar 

  • Barton M, Hamilton DL (1979) The melting relationships of a madupite from the Leucite Hills, Wyoming, to 30 Kb. Contrib Mineral Petrol 69(2):133–142

    Article  Google Scholar 

  • Bateman PC (1961) Granitic formations in the east-central Sierra Nevada near Bishop, California. Geol Soc Am Bull 72(10):1521–1537

    Article  Google Scholar 

  • Blatter DL, Sisson TW, Hankins WB (2013) Crystallization of oxidized, moderately hydrous arc basalt at mid-to lower-crustal pressures: implications for andesite genesis. Contrib Mineral Petrol 166(3):861–886

    Article  Google Scholar 

  • Blundy J, Cashman K (2001) Ascent-driven crystallisation of dacite magmas at Mount St Helens, 1980–1986. Contrib Mineral Petrol 140(6):631–650

    Article  Google Scholar 

  • Bucholz CE, Jagoutz O, Schmidt MW, Sambuu O (2014) Phlogopite-and clinopyroxene-dominated fractional crystallization of an alkaline primitive melt: petrology and mineral chemistry of the Dariv Igneous Complex, Western Mongolia. Contrib Mineral Petrol 167(4):1–28

    Article  Google Scholar 

  • Buhlmann AL, Cavell P, Burwash RA, Creaser RA, Luth RW (2000) Minette bodies and cognate mica-clinopyroxenite xenoliths from the Milk River area, southern Alberta: records of a complex history of the northernmost part of the Archean Wyoming craton. Can J Earth Sci 37(11):1629–1650

    Article  Google Scholar 

  • Buslov MM, Saphonova IY, Watanabe T, Obut OT, Fujiwara Y, Iwata K, Semakov NN, Sugai Y, Smirnova LV, Kazansky AY (2001) Evolution of the Paleo-Asian Ocean (Altai-Sayan Region, Central Asia) and collisions of possible Gondwana-derived terranes with the southern marginal part of the Siberian continent. Geosci J 5(3):203–224

    Article  Google Scholar 

  • Carmichael I, Lange RA, Luhr JF (1996) Quaternary minettes and associated volcanic rocks of Mascota, western Mexico: a consequence of plate extension above a subduction modified mantle wedge. Contrib Mineral Petrol 88:203-216

  • Cawthorn RG, O’Hara M (1976) Amphibole fractionation in calc-alkaline magma genesis. Am J Sci 276(3):309–329

    Article  Google Scholar 

  • DeBari SM, Greene AR (2011) Vertical stratification of composition, density, and inferred magmatic processes in exposed arc crustal Sections. In: Arc-Continent collision. Springer, Berlin, Heidelberg, pp 121–144

  • Dessimoz M, Müntener O, Ulmer P (2012) A case for hornblende dominated fractionation of arc magmas: the Chelan Complex (Washington Cascades). Contrib Mineral Petrol 163(4):567–589

    Article  Google Scholar 

  • Di Carlo I, Pichavant M, Rotolo SG, Scaillet B (2006) Experimental crystallization of a high-K arc basalt: the golden pumice, Stromboli volcano (Italy). J Petrol 47(7):1317–1343

    Article  Google Scholar 

  • Dickinson WR (1975) Potash-depth (K-h) relations in continental margin and intra-oceanic magmatic arcs. Geology 3:53

    Article  Google Scholar 

  • Dijkstra AH, Brouwer FM, Cunningham WD, Buchan C, Badarch G, Mason PRD (2006) Late Neoproterozoic proto-arc ocean crust in the Dariv Range, Western Mongolia: a supra-subduction zone end-member ophiolite. J Geol Soc Lond 163:363–373

    Article  Google Scholar 

  • Downes H, MacDonald R, Upton BGJ, Cox KG, Bodinier J-L, Mason PRD, James D, Hill PG, Hearn BC (2004) Ultramafic xenoliths from the Bearpaw Mountains, Montana, USA: evidence for multiple metasomatic events in the lithospheric mantle beneath the Wyoming craton. J Petrol 45(8):1631–1662

    Article  Google Scholar 

  • Ducea M, Saleeby J (1998) A Case for Delamination of the Deep Batholithic Crust beneath the Sierra Nevada, California. Int Geol Rev 40:78–93. doi:10.1080/00206819809465199

    Article  Google Scholar 

  • Ebadi A, Johannes W (1991) Beginning of melting and composition of first melts in the system Qz–Ab–Or–H2O–CO2. Contrib Mineral Petrol 106(3):286–295

    Article  Google Scholar 

  • Edgar AD, Condliffe E (1978) Derivation of K-rich ultramafic magmas from a peridotitic mantle source. Nature 275:639–640

  • Edgar A, Arima M (1983) Conditions of phlogopite crystallization in ultrapotassic volcanic rocks. Mineral Mag 47(1):11–19

    Article  Google Scholar 

  • Elkins-Tanton LT, Grove TL (2003) Evidence for deep melting of hydrous metasomatized mantle: Pliocene high-potassium magmas from the Sierra Nevadas. J Geophys Res 108(B7)

  • Esperança S, Holloway JR (1987) On the origin of some mica-lamprophyres: experimental evidence from a mafic minette. Contrib Mineral Petrol 95(2):207–216

    Article  Google Scholar 

  • Farmer GL, Glazner AF, Manley CR (2002) Did lithospheric delamination trigger late Cenozoic potassic volcanism in the southern Sierra Nevada, California? Geol Soc Am Bull 114:754–768

    Article  Google Scholar 

  • Foley SF, Taylor WR, Green DH (1986) The effect of fluorine on phase relationships in the system KAlSiO4–Mg2SiO4–SiO2 at 28 kbar and the solution mechanism of fluorine in silicate melts. Contrib Mineral Petrol 93(1):46–55

    Article  Google Scholar 

  • Fowler M, Henney P (1996) Mixed Caledonian appinite magmas: implications for lamprophyre fractionation and high Ba–Sr granite genesis. Contrib Mineral Petrol 126(1–2):199–215

    Article  Google Scholar 

  • Fowler M, Henney P, Darbyshire D, Greenwood P (2001) Petrogenesis of high Ba–Sr granites: the Rogart pluton, Sutherland. J Geol Soc 158(3):521–534

    Article  Google Scholar 

  • Frost BR, Barnes CG, Collins WJ, et al (2001) A Geochemical Classification for Granitic Rocks. J Petrol 42:2033–2048

  • Giannetti B, Luhr JF (1990) Phlogopite-clinopyroxenite nodules from high-K magmas, Roccamonfina Volcano, Italy: evidence for a low-pressure metasomatic origin. Earth Planet Sci Lett 101:404–424

    Article  Google Scholar 

  • Green TH, Blundy JD, Adam J, Yaxley GM (2000) SIMS determination of trace element partition coefficients between garnet, clinopyroxene and hydrous basaltic liquids at 2–7.5 GPa and 1080-1200 °C. Lithos 53:165–187

    Article  Google Scholar 

  • Greene AR, DeBari SM, Kelemen PB, Blusztajn J, Clift PD (2006) A detailed geochemical study of island arc crust: the Talkeetna arc section, South-Central Alaska. J Petrol 47(6):1051–1093

    Article  Google Scholar 

  • Grove T, Parman S, Bowring S et al (2002) The role of an H2O-rich fluid component in the generation of primitive basaltic andesites and andesites from the Mt. Shasta region, N California. Contrib Mineral Petrol 142:375–396

    Article  Google Scholar 

  • Grove TL, Elkins-Tanton LT, Parman SW, Chatterjee N, Müntener O, Gaetani GA (2003) Fractional crystallization and mantle-melting controls on calc-alkaline differentiation trends. Contrib Mineral Petrol 145:515–533

    Article  Google Scholar 

  • Hermann J, Spandler CJ (2008) Sediment melts at sub-arc depths: an experimental study. J Petrol 49:717–740

    Article  Google Scholar 

  • Hochstaedter AG, Ryan JG, Luhr JF (1996) On B/Be ratios in the Mexican volcanic belt. Geochim Cosmochim Acta 60:613–628

    Article  Google Scholar 

  • Holloway JR, Burnham CW (1972) Melting relations of basalt with equilibrium water pressure less than total pressure. J Petrol 13(1):1–29

    Article  Google Scholar 

  • Holtz F, Barbey P, Johannes W, Pichavant M (1989) Composition and temperature at the minimum point in the Qz–Ab–Or system for H2O-undersaturated conditions. Experimental investigation. Terra Cognita 1:271–272

    Google Scholar 

  • Jagoutz OE (2010) Construction of the granitoid crust of an island arc. Part II: a quantitative petrogenetic model. Contrib Mineral Petrol 160:359–381

    Article  Google Scholar 

  • Jagoutz O, Schmidt MW (2012) The formation and bulk composition of modern juvenile continental crust: the Kohistan arc. Chem Geol 298–99:79–96

    Article  Google Scholar 

  • Jagoutz O, Schmidt MW (2013) The composition of the foundered complement to the continental crust and a re-evaluation of fluxes in arcs. Earth Planet Sci Lett 371:177–190

  • Jagoutz O, Müntener O, Schmidt MW, Burg J-P (2011) The roles of flux- and decompression melting and their respective fractionation lines for continental crust formation: evidence from the Kohistan arc. Earth Planet Sci Lett 303(1–2):25–36

    Article  Google Scholar 

  • Janousek V, Farrow CM, Erban V (2006) Interpretation of whole-rock geochemical data in igneous geochemistry: introducing geochemical data toolkit (GCDkit). J Petrol 47:1255–1259

    Article  Google Scholar 

  • Khain EV, Bibikova EV, Salnikova EB, Kröner A, Gibsher AS, Didenko AN, Degtyarev KE, Fedotova AA (2003) The Palaeo-Asian ocean in the Neoproterozoic and early Palaeozoic: new geochronological data and palaeotectonic reconstructions. Precambrian Res 122:329–358

    Article  Google Scholar 

  • Kovalenko DV, Mongush AA, Ageeva OA, Eenzhin G (2014) Sources and geodynamic environments of formation of Vendian-Early Paleozoic magmatic complexes in the Daribi Range, Western Mongolia. Petrology 22:389–417

    Article  Google Scholar 

  • Kozakov IK, Salnikova EB, Khain EV, Kovach VP, Berezhnaya NG, Yakoleva SZ, Plotkina YV (2002) Early Caledonian crystalline rocks of the lake zone in Mongolia: formation history and tectonic settings as deduced from U–Pb and Sm–Nd datings. Geotectonics 36(2):156–166

    Google Scholar 

  • Krawczynski MJ, Grove TL, Behrens H (2012) Amphibole stability in primitive arc magmas: effects of temperature, H2O content, and oxygen fugacity. Contrib Mineral Petrol 164(2):317–339

    Article  Google Scholar 

  • Kress VC, Carmichael ISE (1991) The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states. Contrib Mineral Petrol 108:82–92

    Article  Google Scholar 

  • Kuno H (1966) Lateral variation of basalt magma type across continental margins and island arcs. Bull Volcanol 29(1):195–222

  • Kushiro I (1987) A petrological model of the mantle wedge and lower crust in the Japanese island arcs. Physicochemical principles. Geochem Soc Spec Publ, no. 1, ed. Mysen, BO

  • Lackey JS, Valley JW, Chen JH, Stockli DF (2008) Dynamic magma systems, crustal recycling, and alteration in the central Sierra Nevada batholith: the oxygen isotope record. J Petrol 49(7):1397–1426

    Article  Google Scholar 

  • Lameyre J, Bowden P (1982) Plutonic rock types series: discrimination of various granitoid series and related rocks. J Volcanol Geotherm Res 14(1):169–186

    Article  Google Scholar 

  • LaTourrette T, Hervig RL, Holloway JR (1995) Trace element partitioning between amphibole, phlogopite, and basanite melt. Earth Planet Sci Lett 135:13–30

    Article  Google Scholar 

  • Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. J Petrol 27(3):745–750

    Article  Google Scholar 

  • Lee C-TA, Morton DM, Kistler RW, Baird AK (2007) Petrology and tectonics of Phanerozoic continent formation: from island arcs to accretion and continental arc magmatism. Earth Planet Sci Lett 263(3):370–387

    Article  Google Scholar 

  • Lobach-Zhuchenko SB, Rollinson H, Chekulaev VP, Savatenkov VM, Kovalenko AV, Martin H, Guseva NS, Arestova NA (2008) Petrology of a Late Archaean, highly potassic, sanukitoid pluton from the Baltic Shield: insights into Late Archaean mantle metasomatism. J Petrol 49(3):393–420

    Article  Google Scholar 

  • Longerich HP, Jackson SE, Günther D (1996) Inter-laboratory note. Laser ablation inductively coupled plasma massspectrometric transient signal data acquisition and analyte concentration calculation. J Anal At Spectrom 11:899–904

  • Luhr JF, Carmichael I (1985) Jorullo Volcano, Michoacán, Mexico (1759–1774): the earliest stages of fractionation in calc-alkaline magmas. Contrib Mineral Petrol 90:142–161

  • Luhr JF, Allan JF, Carmichael I, Nelson SA, Hasenaka T (1989) Primitive calc‐alkaline and alkaline rock types from the Western Mexican Volcanic Belt. J Geophys Res 94:4515–4530

  • Luth WC, Jahns RH, Tuttle OF (1964) The granite system at pressures of 4 to 10 kilobars. J Geophys Res 69(4):759–773

    Article  Google Scholar 

  • Maria AH, Luhr JF (2008) Lamprophyres, basanites, and basalts of the western Mexican volcanic belt: volatile contents and a vein-wallrock melting relationship. J Petrol 49:2123–2156

  • Middlemost EAK (1994) Naming materials in the magma/igneous rock system. Earth Sci Rev 37(3–4):215–224

    Article  Google Scholar 

  • Miller CF (1977) Early alkalic plutonism in the calc-alkalic batholithic belt of California. Geology 5(11):685–688

    Article  Google Scholar 

  • Miller CF (1978) Monzonitic plutons, California, and a model for generation of alkali-rich, near silica-saturated magmas. Contrib Mineral Petrol 67(4):349–355

    Article  Google Scholar 

  • Müntener O, Ulmer P (2006) Experimentally derived high-pressure cumulates from hydrous arc magmas and consequences for the seismic velocity structure of lower arc crust. Geophys Res Lett 33(21):L21308

    Article  Google Scholar 

  • Müntener O, Kelemen P, Grove T (2001) The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: an experimental study. Contrib Mineral Petrol 141(6):643–658

    Article  Google Scholar 

  • Naney MT (1983) Phase equilibria of rock-forming ferromagnesian silicates in granitic systems. Am J Sci 283:993–1033

  • Nicholls I, Whitford D (1983) Potassium-rich volcanic rocks of the Muriah complex, Java, Indonesia: products of multiple magma sources? J Volcanol Geotherm Res 18(1):337–359

    Article  Google Scholar 

  • Ownby SE, Lange RA, Hall CM (2008) The eruptive history of the Mascota volcanic field, western Mexico: age and volume constraints on the origin of andesite among a diverse suite of lamprophyric and calc-alkaline lavas. J Volcanol Geotherm Res 177:1077–1091

  • Peccerillo A, Taylor SR (1976) Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contrib Mineral Petrol 58(1):63–81

    Article  Google Scholar 

  • Rapela C, Pankhurst R (1996) Monzonite suites: the innermost Cordilleran plutonism of Patagonia. Trans R Soc Edinb Earth Sci 87(1):193–204

    Article  Google Scholar 

  • Righter K, Carmichael ISE (1996) Phase equilibria of phlogopite lamprophyres from western Mexico: biotite-liquid equilibria and P-T; estimates for biotite-bearing igneous rocks. Contrib Mineral Petrol 123(1):1–21

    Article  Google Scholar 

  • Righter K, Rosas-Elguera J (2001) Alkaline lavas in the volcanic front of the western Mexican Volcanic Belt: geology and petrology of the Ayutla and Tapalpa volcanic fields. J Petrol 42:2333–2361

  • Roeder PL, Emslie RF (1970) Olivine-liquid equilibrium. Contrib Mineral Petrol 29:275–289

  • Sato H (1977) Nickel content of basaltic magmas: identification of primary magmas and a measure of the degree of olivine fractionation. Lithos 10(2):113–120

    Article  Google Scholar 

  • Schmidt MW, Vielzeuf D, Auzanneau E (2004) Melting and dissolution of subducting crust at high pressures: the key role of white mica. Earth Planet Sci Lett 228:65–84

    Article  Google Scholar 

  • Sengör AMC, Natalín BA, Burtman VS (1993) Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature 364:299–307

    Article  Google Scholar 

  • Sengör AMC, Natalín BA, Burtman VS (1994) Tectonic evolution of Altaides. Russ Geol Geophys 35:33–47

    Google Scholar 

  • Sisson TW, Grove TL (1993) Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contrib Mineral Petrol 113:143–166

    Article  Google Scholar 

  • Sisson TW, Ratajeski K, Hankins WB, Glazner AF (2005) Voluminous granitic magmas from common basaltic sources. Contrib Mineral Petrol 148:635–661

    Article  Google Scholar 

  • Stolper E, Newman S (1994) The role of water in the petrogenesis of Mariana trough magmas. Earth Planet Sci Lett 121:293–325. doi:10.1016/0012-821X(94)90074-4

    Article  Google Scholar 

  • Sun S, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond Spec Publ 42(1):313–345

    Article  Google Scholar 

  • Sylvester AG, Miller CF, Nelson C (1978) Monzonites of the White-Inyo Range, California, and their relation to the calc-alkalic Sierra Nevada batholith. Geol Soc Am Bull 89(11):1677–1687

    Article  Google Scholar 

  • Tatsumi Y, Sakuyama M, Fukuyama H (1983) Generation of arc basalt magmas and thermal structure of the mantle wedge in subduction zones. J Geophys Res 88:5815–5825

    Article  Google Scholar 

  • Tuttle OF, Bowen NL (1958) Origin of granite in the light of experimental studies in the system NaAlSi3O8–KAlSi3O8–SiO2–H2O. Geol Soc Am Bull 74:1–146

  • Vigouroux N, Wallace PJ, Kent AJR (2008) Volatiles in high-K magmas from the western Trans-Mexican Volcanic Belt: evidence for fluid fluxing and extreme enrichment of the mantle wedge by subduction processes. J Petrol 49:1589–1618

  • Villemant B, Jaffrezic H, Joron J-L, Treuil M (1981) Distribution coefficients of major and trace elements; fractional crystallization in the alkali basalt series of Chaîne des Puys (Massif Central, France). Geochim Cosmochim Acta 45(11):1997–2016

    Article  Google Scholar 

  • Wallace P, Carmichael ISE (1989) Minette lavas and associated leucitites from the western front of the Mexican Volcanic Belt: petrology, chemistry, and origin. Contrib Mineral Petrol 103:470–492

  • Wallace P, Carmichael ISE, Righter K, Becker TA (1992) Volcanism and tectonism in western Mexico: A contrast of style and substance. Geology 20:625

  • Wheller GE, Varne R, Foden JD, Abbott MJ (1987) Geochemistry of Quaternary volcanism in the Sunda-Banda arc, Indonesia, and three-component genesis of island-arc basaltic magmas. J Volcanol Geotherm Res 32:137–160

    Article  Google Scholar 

  • Wolf MB, Wyllie PJ (1994) Dehydration-melting of amphibolite at 10 kbar: the effects of temperature and time. Contrib Mineral Petrol 115(4):369–383

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge Lydia Zehnder for help with whole-rock XRF analyses; Markus Wälle for LA–ICPMS support; Uyanga Bold and Lkhagva-Ochir Said for helping to organize fieldwork logistics; and Adam Bockelie, Yerenburged Munkhbold, and Eson Erdene for their assistance in the field. Reviews by Cin-Ty Lee and an anonymous reviewer helped to clarify ideas presented in this manuscript and are gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire E. Bucholz.

Additional information

Communicated by J. Hoefs.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bucholz, C.E., Jagoutz, O., Schmidt, M.W. et al. Fractional crystallization of high-K arc magmas: biotite- versus amphibole-dominated fractionation series in the Dariv Igneous Complex, Western Mongolia. Contrib Mineral Petrol 168, 1072 (2014). https://doi.org/10.1007/s00410-014-1072-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-014-1072-9

Keywords

Navigation