Skip to main content
Log in

Tschermak fractionation in calc-alkaline magmas: the Eocene Sabzevar volcanism (NE Iran)

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Calc-alkaline arc magmatism at convergent plate margins is volumetrically dominated by metaluminous andesites. Many studies highlighted the importance of differentiation via fractionation processes of arc magmas, but only in the last decades, it has been demonstrated that not all rock-forming minerals may affect the evolution of calc-alkaline suites. In particular, a major role exerted by Al-rich hornblende amphibole as fractionating mineral phase has been documented in many volcanic arc settings. The aim of this work is to understand the role of the Tschermak molecule (CaAlAlSiO6) hosted in the hornblende and plagioclase fractionation assemblage in driving magma differentiation in calc-alkaline magmatic suites. We explore this issue by applying replenishment–fractional crystallization (RFC) and rare earth element–Rayleigh fractional crystallization (REE-FC) modeling to the Sabzevar Eocene (ca. 45–47 Ma) calc-alkaline volcanism of NE Central Iran, where hornblende-controlled fractionation has been demonstrated. Major element mass balance modeling indicates RFC dominated by a fractionating assemblage made of Hbl52.0–52.5 + Pl44.1–44.2 + Ttn3.3–3.9 (phases are expressed on total crystallized assemblage). REE-FC modeling shows, instead, a lower degree of fractionation with respect to RFC models that is interpreted as due to hornblende and plagioclase resorption by the residual melt. Calculations demonstrate that fractionation of the Tschermak molecule can readily produce dacite and rhyolite magmas starting from a calc-alkaline andesite source (FC = ca. 30 %). In particular, the Tschermak molecule controls both the heavy rare earth elements (HREE) and light rare earth element (LREE) budgets in calc-alkaline differentiation trends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agard P, Omrani J, Jolivet L, Mouthereau F (2005) Convergence history across Zagros (Iran): constraints from collisional and earlier deformation. Int J Earth Sci 94(3):401–419

    Article  Google Scholar 

  • Agard P, Omrani J, Jolivet L, Whitechurch H, Vrielynck B, Spakman W, Monié P, Bertrand M, Wortel R (2011) Zagros orogeny: a subduction-dominated process. Geol Mag 148(5–6):692–725

    Article  Google Scholar 

  • Allen MB, Kheirkhah M, Neill I, Emami MH, McLeod CL (2013) Generation of arc and within-plate chemical signatures in collision zone magmatism: Quaternary lavas from Kurdistan Province, Iran. J Petrol 54:887–911

    Article  Google Scholar 

  • Anderson AT (1980) Significance of hornblende in calc-alkaline andesites and basalts. Am Mineral 65(9–10):837–851

    Google Scholar 

  • Arculus RJ, Wills KJ (1980) The petrology of plutonic blocks and inclusions from the Lesser Antilles island arc. J Petrol 21(4):743–799

    Article  Google Scholar 

  • Azizi H, Asahara Y, Mehrabi B, Chung SL (2011) Geochronological and geochemical constraints on the petrogenesis of high-K granite from the Suffi abad area , Sanandaj-Sirjan Zone, NW Iran. Chem Erde-Geochem 71(4):363–376

    Article  Google Scholar 

  • Bacon CR, Druitt TH (1988) Compositional evolution of the zoned calcalkaline magma chamber of Mount Mazama, Crater Lake, Oregon. Contrib Mineral Petrol 98(2):224–256

    Article  Google Scholar 

  • Bagheri S, Stampfli GM (2008) The Anarak, Jandaq and Posht-e-Badam metamorphic complexes in central Iran: new geological data, relationships and tectonic implications. Tectonophysics 451(1):123–155

    Article  Google Scholar 

  • Baharifar A, Moinevaziri H, Bellon H, Piqué A (2004) The crystalline complexes of Hamadan (Sanandaj–Sirjan zone, western Iran): metasedimentary Mesozoic sequences affected by Late Cretaceous tectono-metamorphic and plutonic events. Compt Rendus Geosci 336(16):1443–1452

    Article  Google Scholar 

  • Berberian M, King GCP (1981) Towards a paleogeography and tectonic evolution of Iran. Can J Earth Sci 18(2):210–265

    Article  Google Scholar 

  • Besse J, Torcq F, Gallet Y, Ricou LE, Krystyn L, Saidi A (1998) Late Permian to Late Triassic palaeomagnetic data from Iran: constraints on the migration of the Iranian block through the Tethyan Ocean and initial destruction of Pangaea. Geophys J Int 135(1):77–92

    Article  Google Scholar 

  • Brophy JG (1987) The Cold Bay volcanic center, Aleutian volcanic arc. Contrib Mineral Petrol 97(3):378–388

    Article  Google Scholar 

  • Brophy JG (1990) Andesites from northeastern Kanaga island, Aleutians. Contrib Mineral Petrol 104(5):568–581

    Article  Google Scholar 

  • Bryan WB, Finger LW, Chayes F (1969) Estimating proportions in petrographic mixing equations by least-square approximations. Science 163:926–927

  • Bryant JA, Yogodzinski GM, Churikova TG (2011) High-Mg# andesitic lavas of the Shisheisky Complex, Northern Kamchatka: implications for primitive calc-alkaline magmatism. Contrib Mineral Petrol 161(5):791–810

    Article  Google Scholar 

  • Cawthorn RG, O’hara MJ (1976) Amphibole fractionation in calc-alkaline magma genesis. Am J Sci 276(3):309–329

    Article  Google Scholar 

  • Cawthorn RG, Curran EB, Arculus RJ (1973) A petrogenetic model for the origin of the calc-alkaline suite of Grenada, Lesser Antilles. J Petrol 14(2):327–337

    Article  Google Scholar 

  • Cherniak DJ, Dimanov A (2010) Diffusion in pyroxene, mica and amphibole. Rev Mineral Geochem 72(1):641–690

    Article  Google Scholar 

  • Chiaradia M, Müntener O, Beate B, Fontignie D (2009) Adakite-like volcanism of Ecuador: lower crust magmatic evolution and recycling. Contrib Mineral Petrol 158(5):563–588

    Article  Google Scholar 

  • Chiu HY, Chung SL, Zarrinkoub MH, Mohammadi SS, Khatib MM, Iizuka Y (2013) Zircon U–Pb age constraints from Iran on the magmatic evolution related to Neotethyan subduction and Zagros orogeny. Lithos 162:70–87

    Article  Google Scholar 

  • Dargahi S, Arvin M, Pan Y, Babaei A (2010) Petrogenesis of post-collisional A-type granitoids from the Urumieh–Dokhtar magmatic assemblage, southwestern Kerman, Iran: constraints on the Arabian–Eurasian continental collision. Lithos 115(1):190–204

    Article  Google Scholar 

  • Davidson J, Turner S, Handley H, Macpherson C, Dosseto A (2007) Amphibole “sponge” in arc crust? Geology 35(9):787–790

    Article  Google Scholar 

  • Davidson J, Turner S, Plank T (2013) Dy/Dy*: variations arising from mantle sources and petrogenetic processes. J Petrol 54(3):525–537

    Article  Google Scholar 

  • Deer WA, Howie RA, Zussman J (1982) Rock-forming minerals, volume 1A: orthosilicates. The Geological Society, London, p. 912

    Google Scholar 

  • Deer WA, Howie RA, Zussman J (1997) Rock-forming minerals, volume 2B, double-chain silicates. The Geological Society, London, p. 764

    Google Scholar 

  • Deer WA, Howie RA, Zussman J (2001) Rock-forming minerals, volume 4B, framework silicates: feldspars. The Geological Society, London, p. 992

    Google Scholar 

  • Deering CD, Cole JW, Vogel TA (2011) Extraction of crystal-poor rhyolite from a hornblende-bearing intermediate mush: a case study of the caldera-forming Matahina eruption, Okataina volcanic complex. Contrib Mineral Petrol 161(1):129–151

    Article  Google Scholar 

  • Defant MJ, Drummond MS (1990) Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347(6294):662–665

    Article  Google Scholar 

  • Dessimoz M, Müntener O, Ulmer P (2012) A case for hornblende dominated fractionation of arc magmas: the Chelan Complex (Washington Cascades). Contrib Mineral Petrol 163(4):567–589

    Article  Google Scholar 

  • Fujimaki H, Tatsumoto M, Aoki K-i (1984) Partition coefficients of Hf, Zr, and REE between phenocrysts and groundmasses. J Geophys Res 89:662–672

    Article  Google Scholar 

  • Gao Y, Santosh M, Hou Z, Wei R, Ma G, Chen Z, Wu J (2012) High Sr/Y magmas generated through crystal fractionation: evidence from Mesozoic volcanic rocks in the northern Taihang orogen, North China Craton. Gondwana Res 22(1):152–168

    Article  Google Scholar 

  • Ghasemi A, Talbot CJ (2006) A new tectonic scenario for the Sanandaj–Sirjan Zone (Iran). J Asian Earth Sci 26(6):683–693

    Article  Google Scholar 

  • Gill J (1981) Orogenic andesites and plate tectonics. Springer, Berlin, p. 390

    Book  Google Scholar 

  • Götze J, Plötze M, Graupner T, Hallbauer DK, Bray CJ (2004) Trace element incorporation into quartz: a combined study by ICP-MS, electron spin resonance, cathodoluminescence, capillary ion analysis, and gas chromatography. Geochim Cosmochim Acta 68(18):3741–3759

    Article  Google Scholar 

  • Green TH, Pearson NJ (1983) Effect of pressure on rare earth element partition coefficients in common magmas. Nature 305:414–416. doi:10.10138/305414a0

  • Green TH, Pearson NJ (1985) Experimental determination of REE partition coefficients between amphibole and basaltic to andesitic liquids at high pressure. Geochim Cosmochim Acta 49(1):465–1–46468. doi:10.1016/0016-7037(85)90295-9.

    Google Scholar 

  • Grove TL, Gerlach DC, Sando TW (1982) Origin of calc-alkaline series lavas at medicine Lake volcano by fractionation, assimilation and mixing. Contrib Mineral Petrol 80(2):160–182

    Article  Google Scholar 

  • Grove T, Parman S, Bowring S, Price R, Baker M (2002) The role of an H2O-rich fluid component in the generation of primitive basaltic andesites and andesites from the Mt. Shasta region, N California. Contrib Mineral Petrol 142(4):375–396

    Article  Google Scholar 

  • Jamshidi K, Ghasemi H, Troll VR, Sadeghian M, Dahren B (2015) Magma storage and plumbing of adakite-type post-ophiolite intrusions in the Sabzevar ophiolitic zone, Northeast Iran. Solid Earth 6(1):49

    Article  Google Scholar 

  • Kelemen PB, Hanghøj K, Greene AR (2003) One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. Treatise Geochem 3:593–659

    Google Scholar 

  • Kerr AC, Kempton PD, Thompson RN (1995) Crustal assimilation during turbulent magma ascent (ATA); new isotopic evidence from the Mull Tertiary lava succession, NW Scotland. Contrib Mineral Petrol 119(2–3):142–154

    Article  Google Scholar 

  • Kimura J-I, Kent AJR, Rowe MC, Katakuse M, Nakano F, Hacker BR, van Keken PE, Kawabata H, Stern RJ (2010) Origin of cross-chain geochemical variation in Quaternary lavas from the northern Izu arc: using a quantitative mass balance approach to identify mantle sources and mantle wedge processes. Geochem Geophys Geosyst 11. doi:10.1029/2010GC003050.

  • Kodolányi J, Pettke T, Spandler C, Kamber BS, Gméling K (2011) Geochemistry of ocean floor and fore-arc sperpentinites: constraints on the ultramafic input to subduction zone. J Petrol egr058. doi:10.1093/petrology/egr058

  • Larocque J, Canil D (2010) The role of amphibole in the evolution of arc magmas and crust: the case from the Jurassic Bonanza arc section, Vancouver Island, Canada. Contrib Mineral Petrol 159(4):475–492

    Article  Google Scholar 

  • Le Maitre RW, Streckeisen A, Zanettin B, Le Bas MJ, Bonin B, Bateman P, Bellieni G, Dudek A, Efremova S, Keller J, Lameyre J, Sabine PA, Schmid R, Sorensen H, Woolley AR (2002) Igneous rocks. A classification and glossary of terms. Reccommendations of the IUGS Subcomission on the Systematics of Igneous Rocks. Cambridge University Press, pp. 236

  • Leake BE, Woolley AR, Birch WD, Burke EA, Ferraris G, Grice JD, Hawthorne FC, Kisch JH, Krivovichev VG, Schumacher JC, Stephenson NCN, Whittaker EJC (2004) Nomenclature of amphiboles: additions and revisions to the International Mineralogical Associationʼs amphibole nomenclature. Am Mineral 89:883–887

    Google Scholar 

  • Luhr JF, Carmichael ISE (1980) The Colima volcanic complex, Mexico. I: post-caldera andesites from Volcan Colima. Contrib Mineral Petrol 71:343–372

    Article  Google Scholar 

  • Macpherson CG (2008) Lithosphere erosion and crustal growth in subduction zones: insights from initiation of the nascent East Philippine Arc. Geology 36(4):311–314

    Article  Google Scholar 

  • Macpherson CG, Dreher ST, Thirlwall MF (2006) Adakites without slab melting: high pressure differentiation of island arc magma, Mindanao, the Philippines. Earth Planet Sci Lett 243(3):581–593

    Article  Google Scholar 

  • Martin H, Smithies RH, Rapp R, Moyen JF, Champion D (2005) An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos 79(1):1–24

    Article  Google Scholar 

  • Matsui Y (1977) Crystal structure control in trace element partition between crystal and magma. Bull Soc Fr Mineral Crystallogr 100:315–324

    Google Scholar 

  • McCall GJH (1997) The geotectonic history of the Makran and adjacent areas of southern Iran. J Asian Earth Sci 15(6):517–531

    Article  Google Scholar 

  • Moghadam HS, Stern RJ (2011) Geodynamic evolution of Upper Cretaceous Zagros ophiolites: formation of oceanic lithosphere above a nascent subduction zone. Geol Mag 148(5–6):762–801

    Article  Google Scholar 

  • Moghadam HS, Li XH, Ling XX, Santos JF, Stern RJ, Li QL, Ghorbani G (2015) Eocene Kashmar granitoids (NE Iran): petrogenetic constraints from U–Pb zircon geochronology and isotope geochemistry. Lithos 216:118–135

    Article  Google Scholar 

  • Moghadam HS, Rossetti F, Lucci F, Chiaradia M, Gerdes A, Martinez ML, Ghorbani G, Nasrabady M (2016) The calc-alkaline and adakitic volcanism of the Sabzevar structural zone (NE Iran): implications for the Eocene magmatic flare-up in Central Iran. Lithos 248:517–535

    Article  Google Scholar 

  • Mohajjel M, Fergusson CL, Sahandi MR (2003) Cretaceous–Tertiary convergence and continental collision, Sanandaj–Sirjan zone, western Iran. J Asian Earth Sci 21(4):397–412

    Article  Google Scholar 

  • Monecke T, Kempe U, Götze J (2002) Genetic significance of the trace element content in metamorphic and hydrothermal quartz: a reconnaissance study. Earth Planet Sci Lett 202(3):709–724

    Article  Google Scholar 

  • Moyen JF (2009) High Sr/Y and La/Yb ratios: the meaning of the “adakitic signature”. Lithos 112(3):556–574

    Article  Google Scholar 

  • Muntener O, Kelemen PB, Grove TL (2001) The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: an experimental study. Contrib Mineral Petrol 141(6):643–658

    Article  Google Scholar 

  • Nagasawa H, Schnetzler CC (1971) Partitioning of rare earth, alkali, and alkaline earth elements between phenocrysts and acidic igneous magmas. Geochim Cosmochim Acta 35:953–968. doi:10.1016/0016-7037(71)90008-1.

    Article  Google Scholar 

  • Nandedkar RH, Ulmer P, Müntener O (2014) Fractional crystallization of primitive, hydrous arc magmas: an experimental study at 0.7 GPa. Contrib Mineral Petrol 167(6):1–27

    Article  Google Scholar 

  • Omrani J, Agard P, Whitechurch H, Benoit M, Prouteau G, Jolivet L (2008) Arc-magmatism and subduction history beneath the Zagros Mountains, Iran: a new report of adakites and geodynamic consequences. Lithos 106(3):380–398

    Article  Google Scholar 

  • Omrani H, Moazzen M, Oberhänsli R, Altenberger U, Lange M (2013) The Sabzevar blueschists of the North-Central Iranian micro-continent as remnants of the Neotethys-related oceanic crust subduction. Int J Earth Sci. doi:10.1007/s00531-013-0881-9

  • Pang KN, Chung SL, Zarrinkoub MH, Khatib MM, Mohammadi SS, Chiu HY, Chu CH, Lee HY, Lo CH (2013) Eocene–Oligocene post-collisional magmatism in the Lut–Sistan region, eastern Iran: magma genesis and tectonic implications. Lithos 180:234–251

    Article  Google Scholar 

  • Peccerillo A, Taylor SR (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contrib Mineral Petrol 58(1):63–81

    Article  Google Scholar 

  • Philpotts A, Ague J (2009) Principles of igneous and metamorphic petrology. Cambridge University Press

  • Pichavant M, Macdonald R (2007) Crystallization of primitive basaltic magmas at crustal pressures and genesis of the calc-alkaline igneous suite: experimental evidence from St Vincent, Lesser Antilles arc. Contrib Mineral Petrol 154(5):535–558

    Article  Google Scholar 

  • Rayleigh Lord JWS (1896) Theoretical considerations respecting the separation of gases by diffusion and similar processes. London, Edinburgh, Dublin Philos Mag J Sci 42(259):493–498

    Article  Google Scholar 

  • Romick JD, Kay SM, Kay RW (1992) The influence of amphibole fractionation on the evolution of calc-alkaline andesite and dacite tephra from the central Aleutians, Alaska. Contrib Mineral Petrol 112(1):101–118

    Article  Google Scholar 

  • Rossetti F, Nasrabady M, Vignaroli G, Theye T, Gerdes A, Razavi SMH, Moin Vaziri H (2010) Early Cretaceous migmatitic mafic granulites from the Sabzevar range (NE Iran): implications for the closure of the Mesozoic peri-Tethyan oceans in central Iran. Terra Nova 22:26–34. doi:10.111/j.1365-3121.2009.00912.x

  • Rossetti F, Nasrabady M, Theye T, Gerdes A, Monié P, Lucci F, Vignaroli G (2014) Adakite differentiation and emplacement in a subduction channel: the late Paleocene Sabzevar magmatism (NE Iran). Geol Soc Am Bull 126(3–4):317–343

    Article  Google Scholar 

  • Rudnick RL, Gao S (2003) Composition of the continental crust. Crust, Treatise Geochem 3:1–64

    Article  Google Scholar 

  • Santo AP, Jacobsen SB, Baker J (2004) Evolution and genesis of calc-alkaline magmas at Filicudi volcano, Aeolian Arc (Southern Tyrrhenian Sea, Italy). Lithos 72(1):73–96

    Article  Google Scholar 

  • Schnetzler CC, Philpotts JA (1970) Partition coefficients of rare-earth elements between igneous matrix material and rock-forming mineral phenocrysts; II. Geochim Cosmochim Acta 34(3):331–340. doi:10.1016/0016-7037(70)90110-9.

    Article  Google Scholar 

  • Shand, S. J. (1943). Eruptive rocks: their genesis, composition, and classification, with a chapter on meteorites. J. Wiley and Sons, Incorporated

  • Shand SJ (1947) The genesis of intrusive magnetite and related ores. Econ Geol 42(7):634–636

    Article  Google Scholar 

  • Sisson TW, Ratajeski K, Hankins WB, Glazner AF (2005) Voluminous granitic magmas from common basaltic sources. Contrib Mineral Petrol 148(6):635–661

    Article  Google Scholar 

  • Stampfli GM, Borel GD (2002) A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth Planet Sci Lett 196(1):17–33

    Article  Google Scholar 

  • Stern RJ (2002) Subduction zones. Rev Geophys 40(4):1–38

  • Stern CR (2011) Subduction erosion: rates, mechanisms, and its role in arc magmatism and the evolution of the continental crust and mantle. Gondwana Res 20(2):284–308

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond, Spec Publ 42(1):313–345

    Article  Google Scholar 

  • Takahashi T, Hirahara Y, Miyazaki T, Senda R, Chang Q, Kimura JI, Tatsumi Y (2013) Primary magmas at the volcanic front of the NE Japan arc: coeval eruption of crustal low-K tholeiitic and mantle-derived medium-K calc-alkaline basalts at Azuma Volcano. J Petrol 54(1):103–148

    Article  Google Scholar 

  • Tatsumi, Y. (2005). The subduction factory: how it operates in the evolving Earth GSA today, 15(7):4

  • Ulmer P (2007) Differentiation of mantle-derived calc-alkaline magmas at mid to lower crustal levels: experimental and petrologic constraints. Periodico Mineral 76(2–3):309–325

    Google Scholar 

  • Verdel C, Wernicke BP, Hassanzadeh J, Guest B (2011) A Paleogene extensional arc flare-up in Iran. Tectonics 30(3)

  • Verdel C, Wernicke BP, Ramezani J, Hassanzadeh J, Renne PR, Spell TL (2007) Geology and thermochronology of Tertiary Cordilleran-style metamorphic core complexes in the Saghand region of central Iran. Geol Soc Am Bull 119(7–8):961–977

    Article  Google Scholar 

  • White JC, Parker DF, Ren M (2009) The origin of trachyte and pantellerite from Pantelleria, Italy: insights from major element, trace element, and thermodynamic modelling. J Volcanol Geotherm Res 179(1):33–55

    Article  Google Scholar 

  • Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95(1):185

    Article  Google Scholar 

  • Zhang X, Mao Q, Zhang H, Zhai M, Yang Y, Hu Z (2011) Mafic and felsic magma interaction during the construction of high-K calc-alkaline plutons within a metacratonic passive margin: the Early Permian Guyang batholith from the northern North China Craton. Lithos 125(1):569–591

    Article  Google Scholar 

Download references

Acknowledgments

This manuscript benefitted from constructive comments and advice from an anonymous reviewer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Lucci.

Electronic supplementary material

ESM 1

(XLSX 16 kb)

ESM 2

(XLSX 17 kb)

ESM 3

(XLSX 12 kb)

ESM 4

(XLSX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lucci, F., Rossetti, F., White, J.C. et al. Tschermak fractionation in calc-alkaline magmas: the Eocene Sabzevar volcanism (NE Iran). Arab J Geosci 9, 573 (2016). https://doi.org/10.1007/s12517-016-2598-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-016-2598-0

Keywords

Navigation