Skip to main content
Log in

Phase equilibria of phlogopite lamprophyres from western Mexico: biotite-liquid equilibria and P-T estimates for biotite-bearing igneous rocks

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

 Olivine and augite minette powders have been equilibrated from one bar to nearly 2.0 kbar (water-saturated), and from 900 to 1300° C, and then quenched rapidly, at oxygen fugacities controlled between the nickel-nickel oxide (NNO) and hematite-magnetite (HM) oxygen buffers. The liquidus of both samples is suppressed ∼100° C at water-saturated conditions and 1500 bar. Both lavas contained between 3 and 4 wt% water at the stage of phenocryst precipitation. The partitioning of ferric and ferrous iron between phlogopite and liquid has been determined on eight samples across 3 log fO2 units; when these determinations are combined with previous studies, Fe2O3/(Σ FeO total) of Mg-rich biotite can be calculated knowing log f O2, T, and X Fe. Thermodynamic modelling of biotite-liquid equilibria results in two expressions for calculating activity coefficients (γ) for annite and phlogopite in natural biotites. Based on the partitioning of BaO and TiO2 between biotite and liquid, we have formulated a thermometer and barometer. Over the range of 400° C, TiO2 partitioning between phlogopite and liquid is a function of temperature (±50° C), and is insensitive to pressure and H2O and O2 activities. BaO partitioning between phlogopite and liquid is a function of both temperature and pressure (±4 kbar), the latter being most important. Applying the TiO2 and BaO partitioning expressions to lamprophyre and lamproite suites shows that Mexican minettes equilibrated at low pressures (5 to 15 kbar;±4 kbar) and temperatures (1090 to 1160° C; ±50° C), while Australian lamproites equilibrated at higher P (up to 30 kbar; ±4 kbar) and T (1125 to 1400° C; ±50° C). Experimental glass compositions and phenocryst fractionation calculations, together with the BaO- and TiO2- based pressure calculations indicate that felsic minettes from the Mexican suite of lavas can be generated by simple fractionation of a more mafic parent minette at mid to lower crustal pressures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received: 1 August 1994/Accepted: 30 June 1995

Rights and permissions

Reprints and permissions

About this article

Cite this article

Righter, K., Carmichael, I. Phase equilibria of phlogopite lamprophyres from western Mexico: biotite-liquid equilibria and P-T estimates for biotite-bearing igneous rocks. Contrib Mineral Petrol 123, 1–21 (1996). https://doi.org/10.1007/s004100050140

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s004100050140

Keywords

Navigation