Skip to main content
Log in

Standard diffusion-weighted, diffusion kurtosis and intravoxel incoherent motion in differentiating invasive placentas

  • Maternal-Fetal Medicine
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Purpose

To investigate the diagnostic value of monoexponential, biexponential, and diffusion kurtosis MR imaging (MRI) in distinguishing invasive placentas.

Methods

A total of 53 patients with invasive placentas and 47 patients with noninvasive placentas undergoing conventional diffusion-weighted imaging (DWI), intravoxel incoherent motion (IVIM), and diffusion kurtosis imaging (DKI) were retrospectively enrolled. The mean, minimum, and maximum parameters including the apparent diffusion coefficient (ADC) and exponential ADC (eADC) from standard DWI, diffusion kurtosis (MK), and diffusion coefficient (MD) from DKI and pure diffusion coefficient (D), pseudo-diffusion coefficient (D*), and perfusion fraction (f) from IVIM were measured and compared from the volumetric analysis. Receiver operating characteristics (ROC) curve and logistic regression analyses were conducted to evaluate the diagnostic efficiency of different diffusion parameters for distinguishing invasive placentas.

Results

Comparisons between accreta lesions in patients with invasive placentas (AL) and lower 1/3 part of the placenta in patients with noninvasive placentas (LP) demonstrated that MD mean, D mean, and D* mean were significantly lower while ADC max and D max were significantly higher in invasive placentas (all p < 0.05). Multivariate analysis demonstrated that D mean, D max and D* mean differed significantly among all the studied parameters for invasive placentas. A combined use of these three parameters yielded an AUC of 0.86 with sensitivity, specificity, and accuracy of 84.91%, 76.60%, and 80%, respectively.

Conclusion

The combined use of different IVIM parameters is helpful in distinguishing invasive placentas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and analyzed during the current study are not publicly available due to PACS system regulated by Sichuan Provincial People’s Hospital, but are available from the corresponding author on reasonable request.

Abbreviations

DWI:

Diffusion-weighted imaging

IVIM:

Intravoxel incoherent motion

DKI:

Diffusion kurtosis imaging

ADC:

Apparent diffusion coefficient

eADC:

Exponential ADC

MK:

Diffusion kurtosis

MD:

Diffusion coefficient

ROC:

Receiver operating characteristics

AL:

Accreta lesions

LP:

Lower 1/3 part of the placenta

PAS:

Placenta accreta spectrum

FIGO:

International federation of gynaecology and obstetrics

ESUR:

The society of abdominal radiology (SAR) and the European society of urogenital Radiology

MRI:

Magnetic resonance imaging

CD:

Cesaerean delivery

AUC:

Area under the curve

GA:

Gestational age

EVT:

Extravillous trophoblast

MNGC:

Multinucleated trophoblast giant cells

References

  1. Jauniaux E, Ayres-de-Campos D (2018) FIGO placenta accreta diagnosis and management expert consensus panel. FIGO consensus guidelines on placenta accreta spectrum disorders: introduction [J]. Int J Gynaecol Obstet 140:261–264

    Article  PubMed  Google Scholar 

  2. Jauniaux E, Bhide A, Kennedy A et al (2018) FIGO placenta accreta diagnosis and management expert consensus panel. FIGO consensus guidelines on placenta accreta spectrum disorders : prenatal diagnosis and screening [J]. Int J Gynaecol Obstet 140:274–280

    Article  PubMed  Google Scholar 

  3. Jauniaux E, Collins SL, Jurkovic D, Burton GJ (2016) Accreta placentation: a systematic review of prenatal ultrasound imaging and grading of villous invasiveness. Am J Obstet Gynecol 215:712–721

    Article  PubMed  Google Scholar 

  4. Jauniaux E, Bhide A (2017) Prenatal ultrasound diagnosis and outcome of placenta previa accreta after cesarean delivery: a systematic review and meta-analysis. Am J Obstet Gynecol 217:27–36

    Article  PubMed  Google Scholar 

  5. Jauniaux E, Collins S, Burton GJ (2018) Placenta accreta spectrum: pathophysiology and evidence-based anatomy for prenatal ultrasound imaging. Am J Obstet Gynecol 218(1):75–87

    Article  PubMed  Google Scholar 

  6. Jha P, Poder L, Bourgioti C et al (2020) Society of abdominal radiology (SAR) and european society of urogenital radiology (ESUR) joint consensus statement for MR imaging of placenta accreta spectrum disorders. Eur Radiol 30:2604–2615

    Article  PubMed  Google Scholar 

  7. Le Bihan D (1988) Intravoxel incoherent motion imaging using steady-state free precession. Magn Reson Med 7:346–351

    Article  PubMed  Google Scholar 

  8. Le Bihan D (1995) Molecular diffusion, tissue microdynamics and microstructure. NMR Biomed 8:375–386

    Article  PubMed  Google Scholar 

  9. Bao Y, Pang Y, Sun Z et al (2021) Functional diagnosis of placenta accreta by intravoxel incoherent motion model diffusion-weighted imaging. Eur Radiol 31(2):740–748

    Article  PubMed  Google Scholar 

  10. Lu T, Pu H, Li K et al (2019) Can introvoxel incoherent motion MRI be used to differentiate patients with placenta accreta spectrum disorders? BMC Pregnancy Childbirth 19:531

    Article  PubMed  PubMed Central  Google Scholar 

  11. Rosenkrantz AB, Padhani AR, Chenevert TL et al (2015) Body diffusion kurtosis imaging: Basic principles, applications, and considerations for clinical practice. J Magn Reson Imaging 42:1190–1202

    Article  PubMed  Google Scholar 

  12. Jensen JH, Helpern JA, Ramani A et al (2005) Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med 53:1432–1440

    Article  PubMed  Google Scholar 

  13. Xiao Z, Zhong Y, Tang Z et al (2018) Standard diffusion-weighted, diffusion kurtosis and intravoxel incoherent motion MR imaging of sinonasal malignancies: correlations with Ki-67 proliferation status. Eur Radiol 28:2923–2933

    Article  PubMed  Google Scholar 

  14. Cui Y, Yang X, Du X et al (2018) Whole-tumour diffusion kurtosis MR imaging histogram analysis of rectal adenocarcinoma: correlation with clinical pathologic prognostic factors. Eur Radiol 28:1485–1494

    Article  PubMed  Google Scholar 

  15. Ding Y, Tan Q, Mao W et al (2019) Differentiating between malignant and benign renal tumors: do IVIM and diffusion kurtosis imaging perform better than DWI? Eur Radiol 29:6930–6939

    Article  PubMed  Google Scholar 

  16. Wan Q, Deng Y, Lei Q et al (2019) Differentiating between malignant and benign solid solitary pulmonary lesions: are intravoxel incoherent motion and diffusion kurtosis imaging superior to conventional diffusion-weighted imaging? Eur Radiol 29:1607–1615

    Article  PubMed  Google Scholar 

  17. Raab P, Hattingen E, Franz K, Zanella FE, Lanfermann H (2010) Cerebral gliomas: diffusional kurtosis imaging analysis of microstructural differences. Radiology 254(3):876–881

    Article  PubMed  Google Scholar 

  18. Hori M, Fukunaga I, Masutani Y, Nakanishi A, Shimoji K, Kamagata K, Asahi K, Hamasaki N, Suzuki Y, Aoki S (2012) New diffusion metrics for spondylotic myelopathy at an early clinical stage. Eur Radiol 22(8):1797–1802

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wang JJ, Lin WY, Lu CS, Weng YH, Ng SH, Wang CH, Liu HL, Hsieh RH, Wan YL, Wai YY (2011) Parkinson disease: diagnostic utility of diffusion kurtosis imaging. Radiology 261(1):210–217

    Article  PubMed  Google Scholar 

  20. Yang M, Yan Y, Wang H (2018) IMAge/enGINE: a freely available software for rapid computation of highdimensional quantification. Quant Imaging Med Surg. https://doi.org/10.21037/qims.2018.12.03

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sun H, Qu H, Chen L et al (2019) Identification of suspicious invasive placentation based on clinical MRI data using textural features and automated machine learning. Eur Radiol 29:6152–6162

    Article  PubMed  Google Scholar 

  22. Le Bihan D, Breton E, Lallemand D et al (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161:401–407

    Article  PubMed  Google Scholar 

  23. Barajas RF Jr, Rubenstein JL, Chang JS et al (2010) Diffusion weighted MR imaging derived apparent diffusion coefficient is predictive of clinical outcome in primary central nervous system lymphoma. AJNR Am J Neuroradiol 31:60–66

    Article  PubMed  PubMed Central  Google Scholar 

  24. Benirschke K, Burton GJ, Baergen RN (2012) Pathology of the human placenta, vol 20. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  25. Jauniaux E, Burton GC (2018) Pathophysiology of placenta accreta spectrum disorders: a review of current findings. Clin Obstet Gynecol 61(4):743–754

    Article  PubMed  Google Scholar 

  26. Moore RJ, Issa B, Tokarczuk R et al (2000) In vivo intravoxel incoherent motion measurements in the human placenta using echo-planar imaging at 0.5T. Magn Reson Med 43(3):295–302

    Article  CAS  PubMed  Google Scholar 

  27. Jauniaux E, Collins S, Burton GJ (2018) Placenta accreta spectrum: pathophysiology and evidence-based anatomy for prenatal ultrasound imaging. Am J Obstet Gynecol 218:75–87

    Article  PubMed  Google Scholar 

  28. Timor-Tritsch IE, Monteagudo A (2012) Unforeseen consequences of the increasing rate of cesarean deliveries: early placenta accreta and cesarean scar pregnancy .A review. Am J Obstet Gynecol 207:14–29

    Article  PubMed  Google Scholar 

  29. Tikkanen M, Paavonen J, Loukovaara M, Stefanovic V (2011) Antenatal diagnosis of placenta accreta leads to reduced blood loss: placenta accreta. Acta Obstet Gynecol Scand 90:1140–1146

    Article  PubMed  Google Scholar 

  30. Khong Y, Brosens I (2011) Defective deep placentation. Best Pract Res Clin Obstet Gynaecol 25(3):301–311

    Article  PubMed  Google Scholar 

  31. Jauniaux E, Bhide A, Burton GJ (2017) Pathophysiology of accreta. In: Silver R (ed) Placenta accreta syndrome. CRC Press, Portland, pp 13–28

    Chapter  Google Scholar 

Download references

Funding

This research is supported by Sichuan province science and technology program (2021YJ0237).

Author information

Authors and Affiliations

Authors

Contributions

TL: project development, manuscript writing, YW: data collection, ML: data collection, HL: data collection, MW: data collection, GW: manuscript writing. YD, CW, XL have been removed as authors. The new authors approved the version to be published and agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to Guotai Wang.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose. All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript. The authors have no financial or proprietary interests in any material discussed in this article.

Informed consent

Informed consent was obtained from all individual participants included in the study. This study was approved by the Institutional Review Board (IRB) of Sichuan Provincial People’s Hospital.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, T., Li, M., Wang, Y. et al. Standard diffusion-weighted, diffusion kurtosis and intravoxel incoherent motion in differentiating invasive placentas. Arch Gynecol Obstet 309, 503–514 (2024). https://doi.org/10.1007/s00404-023-06947-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-023-06947-4

Keywords

Navigation