Skip to main content

Advertisement

Log in

Diffusion and perfusion MRI parameters in the evaluation of placenta accreta spectrum disorders in patients with placenta previa

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Objectives

To evaluate the placental function by monoexponential, biexponential, and diffusion kurtosis MR imaging (MRI) in patients with placenta previa.

Methods

A total of 62 patients with placenta accreta spectrum (PAS) disorders and 11 patients with normal placentas were retrospectively enrolled, who underwent conventional diffusion-weighted imaging (DWI), intravoxel incoherent motion (IVIM), and diffusion kurtosis imaging (DKI). The apparent diffusion coefficient (ADC) and exponential ADC (eADC) from standard DWI, mean kurtosis (MK), and diffusion coefficient (MD) from DKI, and pure diffusion coefficient (D), pseudo-diffusion coefficient (D*), and perfusion fraction (f) from IVIM were measured and compared from the volumetric analysis.

Results

Comparisons between patients with PAS disorders and patients with normal placentas demonstrated that MD mean, D mean, and D* mean values in patients with PAS disorders were significantly higher than those in patients with normal placentas (p < 0.05). Comparisons between patients with accreta, increta, and percreta, and patients with normal placentas showed that the D mean was significantly higher in patients with placenta increta and percreta than in patients with normal placentas (p < 0.05).

Conclusion

The accreta lesions in PAS disorders had deceased cellularity and increased blood movement. The alteration of placental cellularity was more prominent in placenta increta and percreta.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Silver RM, Branch DW (2018) Placenta accreta spectrum. N Engl J Med 378:1529–1536

    Article  Google Scholar 

  2. Jauniaux E, Collins S, Burton GJ (2018) Placenta accreta spectrum: pathophysiology and evidence-based anatomy for prenatal ultrasound imaging. Am J Obstet Gynecol 218:75–87

    Article  Google Scholar 

  3. Booker W, Moroz L (2019) Abnormal placentation. Semin Perinatol 43(1):51–59

    Article  Google Scholar 

  4. Miller DA, Chollet JA, Goodwin TM (1997) Clinical risk factors for placenta previa placenta accreta. Am J Obstet Gynecol 177:210–214

    Article  CAS  Google Scholar 

  5. Wu S, Kocherginsky M, Hibbard JU (2005) Abnormal placentation: twenty-year analysis. Am J Obstet Gynecol 192:1458–1461

    Article  Google Scholar 

  6. Allen L et al (2018) FIGO consensus guidelines on placenta accreta spectrum disorders: nonconservative surgical management. Int J Gynaecol Obstet 140(3):281–290

    Article  Google Scholar 

  7. Srisajjakul S, Prapaisilp P, Bangchokdee S (2014) MRI of placental adhesive disorder. Br J Radiol 87:20140294

    Article  CAS  Google Scholar 

  8. Silver RM, Landon MB, Rouse DJ et al (2006) National institute of child health and human development maternal-fetal medicine units network. Maternal morbidity associated with multiple repeat cesarean deliveries. Obstet Gynecol 107:1226–1232

    Article  Google Scholar 

  9. Barrer CA, Francavill ML, Sera SD et al (2020) Specific absorption rate and specific energy dose: comparison of 1.5-T versus 3.0-T fetal MRI. Radiology 295(3):664–674

    Article  Google Scholar 

  10. Le Bihan D (1988) Intravoxel incoherent motion imaging using steady-state free precession. Magn Reson Med 7:346–351

    Article  Google Scholar 

  11. Le Bihan D (1995) Molecular diffusion, tissue microdynamics and microstructure. NMR Biomed 8:375–386

    Article  Google Scholar 

  12. Rosenkrantz AB, Padhani AR, Chenevert TL et al (2015) Body diffusion kurtosis imaging: basic principles, applications, and considerations for clinical practice. J Magn Reson Imaging 42:1190–1202

    Article  Google Scholar 

  13. Jensen JH, Helpern JA, Ramani A et al (2005) Diffusional kurtosis imaging: the quantification of non-Gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med 53:1432–1440

    Article  Google Scholar 

  14. Lu T, Pu H, Li K et al (2019) Can introvoxel incoherent motion MRI be used to differentiate patients with placenta accreta spectrum disorders? BMC Pregnancy Childbirth 19:531

    Article  Google Scholar 

  15. Lu T, Song B, Pu H et al (2020) Prognosticators of intravoxel incoherent motion (IVIM) MRI for adverse maternal and neonatal clinical outcomes in patients with placenta accreta spectrum disorders. Transl Androl Urol. https://doi.org/10.21037/tau.2019.12.27

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lu T, Pu H, Cui W et al (2019) Use of intravoxel incoherent motion MR imaging to assess placental perfusion in patients with placental adhesion disorder on their third trimester. Clin Imaging 56:135–139

    Article  Google Scholar 

  17. Sohlberg S, Mulic-Lutvica A, Lindgren P et al (2014) Placental perfusion in normal pregnancy and early and late preeclampsia: a magnetic resonance imaging study. Placenta 35:202–206

    Article  CAS  Google Scholar 

  18. Moore RJ, Strachan BK, Tyler DJ et al (2000) In utero perfusion fraction maps in normal and growth restricted pregnancy measured using IVIM echoplanar MRI. Placenta 21(7):726–730

    Article  CAS  Google Scholar 

  19. Capuani S, Guerreri M, Antonelli A et al (2017) Diffusion and perfusion quantified by magnetic resonance imaging are markers of human placenta development in normal pregnancy. Placenta 58:33–39

    Article  Google Scholar 

  20. Jakab A, Tuura RL, Kottke R et al (2018) Microvascular perfusion of the placenta, developing fetal liver, and lungs assessed with intravoxel incoherent motionimaging. J Magn Reson Imaging 48:214–225

    Article  Google Scholar 

  21. Moore RJ, Issa B, Tokarczuk R et al (2000) In vivo intravoxel incoherent motion measurements in the human placenta using echo-planar imaging at 0.5T. Magn Reson Med 43(3):295–302

    Article  CAS  Google Scholar 

  22. Yang M, Yan Y, Wang H (2018) IMAge/enGINE: a freely available software for rapid computation of highdimensional quantification. Quant Imaging Med Surg. https://doi.org/10.21037/qims.2018.12.03

    Article  PubMed  PubMed Central  Google Scholar 

  23. Xiao Z, Zhong Y, Tang Z et al (2018) Standard diffusion-weighted, diffusion kurtosis and intravoxel incoherent motion MR imaging of sinonasal malignancies: correlations with Ki-67 proliferation status. Eur Radiol 28:2923–2933

    Article  Google Scholar 

  24. Cui Y, Yang X, Du X et al (2018) Whole-tumour diffusion kurtosis MR imaging histogram analysis of rectal adenocarcinoma: correlation with clinical pathologic prognostic factors. Eur Radiol 28:1485–1494

    Article  Google Scholar 

  25. Ding Y, Tan Q, Mao W et al (2019) Differentiating between malignant and benign renal tumors: do IVIM and diffusion kurtosis imaging perform better than DWI? Eur Radiol 29:6930–6939

    Article  Google Scholar 

  26. Wan Q, Deng Y, Lei Q et al (2019) Differentiating between malignant and benign solid solitary pulmonary lesions: are intravoxel incoherent motion and diffusion kurtosis imaging superior to conventional diffusion-weighted imaging? Eur Radiol 29:1607–1615

    Article  Google Scholar 

  27. Sun H, Qu H, Chen L et al (2019) Identification of suspicious invasive placentation based on clinical MRI data using textural features and automated machine learning [J]. Eur Radiol 29:6152–6162

    Article  Google Scholar 

  28. Liu XH, Feng J, Huang CT et al (2022) Use of intravoxel incoherent motion MRI to assess placental perfusion in normal and fetal growth restricted pregnancies on their third trimester. Placenta 118:10–15

    Article  Google Scholar 

  29. Andescavage N, You W, Jacobs M et al (2020) Exploring in vivo placental microstructure in healthy and growth-restricted pregnancies through diffusion-weighted magnetic resonance imaging. Placenta 93:113–211

    Article  Google Scholar 

  30. Siauve N, Hayot PH, Deloison B et al (2019) Assessment of human placental perfusion by intravoxel incoherent motion MR imaging. J Maternal-Fetal Neonatal Med. 32(2):293–300

    Article  Google Scholar 

  31. Kristi BA, Ditte NH, Caroline H et al (2020) Placental diffusion-weighted MRI in normal pregnancies and those complicated by placental dysfunction due to vascular malperfusion. Placenta 91:52–58

    Article  Google Scholar 

  32. Jauniaux E, Collins S, Burton GJ (2017) The placenta accreta spectrum: pathophysiology and evidence-based anatomy for prenatal ultrasound imaging. Am J Obstet Gynecol. https://doi.org/10.1016/j.ajog.2017.05.067

    Article  PubMed  Google Scholar 

  33. Zaghal AA, Hussain HK, Berjawi GA (2019) MRI evaluation of the placenta from normal variants to abnormalities of implantation and malignancies. J Magn Reson Imaging 50:1702–1717

    Article  Google Scholar 

  34. Hecht JL, Baergen R, Ernst LM et al (2020) Classifcation and reporting guidelines for the pathology diagnosis of placenta accreta spectrum (PAS) disorders: recommendations from an expert panel. Mod Pathol 33:2382–2396

    Article  Google Scholar 

  35. Jauniaux E, Burton GC (2018) Pathophysiology of placenta accreta spectrum disorders: a review of current findings. Clin Obstet Gynecol 61(4):743–754

    Article  Google Scholar 

  36. Avni R, Neeman M, Garbow JR (2015) Functional MRI of the placenta-from rodents to humans. Placenta 36:615–622

    Article  CAS  Google Scholar 

  37. Solomon E, Avni R, Hadas R et al (2014) Major mouse placental compartments revealed by diffusion-weighted MRI, contrast-enhanced MRI and fluorescence imaging. Proc Natl Acad Sci USA 111(28):10353–10358

    Article  CAS  Google Scholar 

Download references

Funding

This research is supported by Sichuan Province Science and Technology Program (2021YJ0237).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guotai Wang.

Ethics declarations

Conflict of interest

None.

Ethical standards

The study was conducted in accordance with the Declaration of Helsinki (as revised in 2013). This study was approved by the institutional review board of Sichuan Provincial People’s Hospital (approval number: 2021–282) and written informed consent was given by all participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, T., Wang, Y., Deng, Y. et al. Diffusion and perfusion MRI parameters in the evaluation of placenta accreta spectrum disorders in patients with placenta previa. Magn Reson Mater Phy 35, 1009–1020 (2022). https://doi.org/10.1007/s10334-022-01023-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-022-01023-5

Keywords

Navigation