Agnello L, Bivona G, Novo G, Scazzone C, Muratore R, Levantino P et al (2017) Heart-type fatty acid binding protein is a sensitive biomarker for early AMI detection in troponin negative patients: a pilot study. Scand J Clin Lab Invest 77:428–432. https://doi.org/10.1080/00365513.2017.1335880
CAS
Article
PubMed
Google Scholar
Alcolea D, Martínez-Lage P, Sánchez-Juan P, Olazáran J, Antúnez C, Izagirre A et al (2015) Amyloid precursor protein metabolism and inflammation markers in preclinical Alzheimer disease. Neurology 85:626–633. https://doi.org/10.1212/wnl.0000000000001859
CAS
Article
PubMed
Google Scholar
Alcolea D, Vilaplana E, Pegueroles J, Montal V, Sánchez-Juan P, González-Suárez A et al (2015) Relationship between cortical thickness and cerebrospinal fluid YKL-40 in predementia stages of Alzheimer’s disease. Neurobiol Aging 36:2018–2023. https://doi.org/10.1016/j.neurobiolaging.2015.03.001
CAS
Article
PubMed
Google Scholar
Alcolea D, Vilaplana E, Suárez-Calvet M, Illán-Gala I, Blesa R, Clarimón J et al (2017) CSF sAPPβ, YKL-40, and neurofilament light in frontotemporal lobar degeneration. Neurology 89:178–188. https://doi.org/10.1212/WNL.0000000000004088
CAS
Article
PubMed
Google Scholar
Alexopoulos P, Werle L, Roesler J, Thierjung N, Gleixner LS, Yakushev I et al (2016) Conflicting cerebrospinal fluid biomarkers and progression to dementia due to Alzheimer’s disease. Alzheimers Res Ther 8:51. https://doi.org/10.1186/s13195-016-0220-z
CAS
Article
PubMed
PubMed Central
Google Scholar
Association Alzheimer’s (2016) Alzheimer’s disease facts and figures. Alzheimers Dement 12:459–509
Article
Google Scholar
Amador-Ortiz C, Lin WL, Ahmed Z, Personett D, Davies P, Duara R et al (2007) TDP-43 immunoreactivity in hippocampal sclerosis and Alzheimer’s disease. Ann Neurol 61:435–445. https://doi.org/10.1002/ana.21154
CAS
Article
PubMed
PubMed Central
Google Scholar
Anand S, Barnes JM, Young SA, Garcia DM, Tolley HD, Kauwe JSK et al (2017) Discovery and confirmation of diagnostic serum lipid biomarkers for Alzheimer’s disease using direct infusion mass spectrometry. J Alzheimers Dis 59:277–290. https://doi.org/10.3233/JAD-170035
CAS
Article
PubMed
Google Scholar
Andreasen N, Minthon L, Vanmechelen E, Vanderstichele H, Davidsson P, Winblad B et al (1999) Cerebrospinal fluid tau and Aβ42 as predictors of development of Alzheimer’s disease in patients with mild cognitive impairment. Neurosci Lett 273:5–8
CAS
Article
PubMed
Google Scholar
Angiolillo AL, Sgadari C, Taub DD, Liao F, Farber JM, Maheshwari S et al (1995) Human interferon-inducible protein 10 is a potent inhibitor of angiogenesis in vivo. J Exp Med 182:155–162
CAS
Article
PubMed
Google Scholar
Antonell A, Mansilla A, Rami L, Lladó A, Iranzo A, Olives J et al (2014) Cerebrospinal fluid level of YKL-40 protein in preclinical and prodromal Alzheimer’s disease. J Alzheimers Dis 42:901–908. https://doi.org/10.3233/jad-140624
CAS
Article
PubMed
Google Scholar
Arnerić SP, Batrla-Utermann R, Beckett L, Bittner T, Blennow K, Carter L et al (2017) Cerebrospinal fluid biomarkers for Alzheimer’s disease: a view of the regulatory science qualification landscape from the Coalition Against Major Diseases CSF Biomarker Team. J Alzheimers Dis 55:19–35. https://doi.org/10.3233/JAD-160573
Article
PubMed
Google Scholar
Ayton S, Diouf I, Bush AI, Alzheimer’s Disease Neuroimaging Initiative (2017) Evidence that iron accelerates Alzheimer’s pathology: a CSF biomarker study. J Neurol Neurosurg Psychiatry 89:456–460. https://doi.org/10.1136/jnnp-2017-316551
Article
PubMed
Google Scholar
Ayton S, Faux NG, Bush AI (2017) Association of cerebrospinal fluid ferritin level with preclinical cognitive decline in APOE-ɛ4 carriers. JAMA Neurol 74:122–125. https://doi.org/10.1001/jamaneurol.2016.4406
Article
PubMed
Google Scholar
Ayton S, Faux NG, Bush AI, Alzheimer’s Disease Neuroimaging Initiative (2015) Ferritin levels in the cerebrospinal fluid predict Alzheimer’s disease outcomes and are regulated by APOE. Nat Commun 6:6760. https://doi.org/10.1038/ncomms7760
CAS
Article
PubMed
PubMed Central
Google Scholar
Ayton S, Fazlollahi A, Bourgeat P, Raniga P, Ng A, Lim YY et al (2017) Cerebral quantitative susceptibility mapping predicts amyloid-beta-related cognitive decline. Brain 140:2112–2119. https://doi.org/10.1093/brain/awx137
Article
PubMed
Google Scholar
Babić Leko M, Borovečki F, Dejanović N, Hof PR, Ŝimić G (2016) Predictive value of cerebrospinal fluid visinin-like protein-1 levels for Alzheimer’s disease early detection and differential diagnosis in patients with mild cognitive impairment. J Alzheimers Dis 50:765–778. https://doi.org/10.3233/jad-150705
Article
PubMed
Google Scholar
Bachurin SO, Bovina EV, Ustyugov AA (2017) Drugs in clinical trials for Alzheimer’s disease: the major trends. Med Res Rev 37:1186–1225. https://doi.org/10.1002/med.21434
CAS
Article
PubMed
Google Scholar
Bakota L, Brandt R (2016) Tau biology and tau-directed therapies for Alzheimer’s disease. Drugs 76:301–313. https://doi.org/10.1007/s40265-015-0529-0
CAS
Article
PubMed
PubMed Central
Google Scholar
Baldacci F, Lista S, Cavedo E, Bonuccelli U, Hampel H (2017) Diagnostic function of the neuroinflammatory biomarker YKL-40 in Alzheimer’s disease and other neurodegenerative diseases. Expert Rev Proteom 14:285–299. https://doi.org/10.1080/14789450.2017.1304217
CAS
Article
Google Scholar
Baldacci F, Lista S, Garaci F, Bonuccelli U, Toschi N, Hampel H (2016) Biomarker-guided classification scheme of neurodegenerative diseases. J Sport Health Sci 5:383–387
Article
PubMed
PubMed Central
Google Scholar
Baldacci F, Lista S, O’Bryant SE, Ceravolo R, Toschi N, Hampel H et al (2018) Blood-based biomarker screening with agnostic biological definitions for an accurate diagnosis within the dimensional spectrum of neurodegenerative diseases. Methods Mol Biol 1750:139–155. https://doi.org/10.1007/978-1-4939-7704-8_9
CAS
Article
PubMed
Google Scholar
Baldacci F, Toschi N, Lista S, Zetterberg H, Blennow K, Kilimann I et al (2017) Two-level diagnostic classification using cerebrospinal fluid YKL-40 in Alzheimer’s disease. Alzheimers Dement 13:993–1003. https://doi.org/10.1016/j.jalz.2017.01.021
Article
PubMed
Google Scholar
Ballatore C, Brunden KR, Trojanowski JQ, Lee VM, Smith AB 3rd (2017) Non-naturally occurring small molecule microtubule-stabilizing agents: a potential tactic for CNS-directed therapies. ACS Chem Neurosci 8:5–7. https://doi.org/10.1021/acschemneuro.6b00384
CAS
Article
PubMed
Google Scholar
Bayer TA, Wirths O (2014) Focusing the amyloid cascade hypothesis on N-truncated Abeta peptides as drug targets against Alzheimer’s disease. Acta Neuropathol 127:787–801. https://doi.org/10.1007/s00401-014-1287-x
CAS
Article
PubMed
PubMed Central
Google Scholar
Begcevic I, Brinc D, Brown M, Martinez-Morillo E, Goldhardt O, Grimmer T et al (2018) Brain-related proteins as potential CSF biomarkers of Alzheimer’s disease: a targeted mass spectrometry approach. J Proteom 182:12–20. https://doi.org/10.1016/j.jprot.2018.04.027
CAS
Article
Google Scholar
Berge G, Sando SB, Albrektsen G, Lauridsen C, Møller I, Grøntvedt GR et al (2016) Alpha-synuclein measured in cerebrospinal fluid from patients with Alzheimer’s disease, mild cognitive impairment, or healthy controls: a two year follow-up study. BMC Neurol 16:180. https://doi.org/10.1186/s12883-016-0706-0
CAS
Article
PubMed
PubMed Central
Google Scholar
Bergman J, Dring A, Zetterberg H, Blennow K, Norgren N, Gilthorpe J et al (2016) Neurofilament light in CSF and serum is a sensitive marker for axonal white matter injury in MS. Neurol Neuroimmunol Neuroinflamm 3:e271. https://doi.org/10.1212/NXI.0000000000000271
Article
PubMed
PubMed Central
Google Scholar
Bettcher BM, Johnson SC, Fitch R, Casaletto KB, Heffernan KS, Asthana S et al (2018) Cerebrospinal fluid and plasma levels of inflammation differentially relate to CNS markers of Alzheimer’s disease pathology and neuronal damage. J Alzheimers Dis 62:385–397. https://doi.org/10.3233/JAD-170602
CAS
Article
PubMed
PubMed Central
Google Scholar
Blennow K, Bogdanovic N, Alafuzoff I, Ekman R, Davidsson P (1996) Synaptic pathology in Alzheimer’s disease: relation to severity of dementia, but not to senile plaques, neurofibrillary tangles, or the ApoE4 allele. J Neural Transm (Vienna) 103:603–618. https://doi.org/10.1007/BF01273157
CAS
Article
Google Scholar
Blennow K, De Meyer G, Hansson O, Minthon L, Wallin A, Zetterberg H et al (2009) Evolution of Abeta42 and Abeta40 levels and Abeta42/Abeta40 ratio in plasma during progression of Alzheimer’s disease: a multicenter assessment. J Nutr Health Aging 13:205–208
CAS
Article
PubMed
Google Scholar
Blennow K, Dubois B, Fagan AM, Lewczuk P, de Leon MJ, Hampel H (2015) Clinical utility of cerebrospinal fluid biomarkers in the diagnosis of early Alzheimer’s disease. Alzheimers Dement 11:58–69. https://doi.org/10.1016/j.jalz.2014.02.004
Article
PubMed
Google Scholar
Blennow K, Hampel H, Weiner M, Zetterberg H (2010) Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat Rev Neurol 6:131–144. https://doi.org/10.1038/nrneurol.2010.4
CAS
Article
PubMed
Google Scholar
Blennow K, Zetterberg H, Minthon L, Lannfelt L, Strid S, Annas P et al (2007) Longitudinal stability of CSF biomarkers in Alzheimer’s disease. Neurosci Lett 419:18–22. https://doi.org/10.1016/j.neulet.2007.03.064
CAS
Article
PubMed
Google Scholar
Brettschneider J, Del Tredici K, Lee VM, Trojanowski JQ (2015) Spreading of pathology in neurodegenerative diseases: a focus on human studies. Nat Rev Neurosci 16:109–120. https://doi.org/10.1038/nrn3887
CAS
Article
PubMed
PubMed Central
Google Scholar
Brinkmalm A, Brinkmalm G, Honer WG, Frölich L, Hausner L, Minthon L et al (2014) SNAP-25 is a promising novel cerebrospinal fluid biomarker for synapse degeneration in Alzheimer’s disease. Mol Neurodegener 9:53. https://doi.org/10.1186/1750-1326-9-53
CAS
Article
PubMed
PubMed Central
Google Scholar
Bronzuoli MR, Iacomino A, Steardo L, Scuderi C (2016) Targeting neuroinflammation in Alzheimer’s disease. J Inflamm Res 9:199–208. https://doi.org/10.2147/JIR.S86958
CAS
Article
PubMed
PubMed Central
Google Scholar
Brosseron F, Traschutz A, Widmann CN, Kummer MP, Tacik P, Santarelli F et al (2018) Characterization and clinical use of inflammatory cerebrospinal fluid protein markers in Alzheimer’s disease. Alzheimers Res Ther 10:25. https://doi.org/10.1186/s13195-018-0353-3
Article
PubMed
PubMed Central
Google Scholar
Bruggink KA, Kuiperij HB, Claassen JA, Verbeek MM (2013) The diagnostic value of CSF amyloid-beta(43) in differentiation of dementia syndromes. Curr Alzheimer Res 10:1034–1040
CAS
Article
PubMed
Google Scholar
Brunden KR, Zhang B, Carroll J, Yao Y, Potuzak JS, Hogan AM et al (2010) Epothilone D improves microtubule density, axonal integrity, and cognition in a transgenic mouse model of tauopathy. J Neurosci 30:13861–13866. https://doi.org/10.1523/jneurosci.3059-10.2010
CAS
Article
PubMed
PubMed Central
Google Scholar
Buchhave P, Blennow K, Zetterberg H, Stomrud E, Londos E, Andreasen N, Minthon L et al (2009) Longitudinal study of CSF biomarkers in patients with Alzheimer’s disease. PLoS One 4:e6294. https://doi.org/10.1371/journal.pone.0006294
CAS
Article
PubMed
PubMed Central
Google Scholar
Budd Haeberlein S, O’Gorman J, Chiao P, Bussiere T, von Rosenstiel P, Tian Y et al (2017) Clinical development of aducanumab, an anti-Abeta human monoclonal antibody being investigated for the treatment of early Alzheimer’s disease. J Prev Alzheimers Dis 4:255–263. https://doi.org/10.14283/jpad.2017.39
CAS
Article
PubMed
Google Scholar
Byrne LM, Rodrigues FB, Blennow K, Durr A, Leavitt BR, Roos RAC et al (2017) Neurofilament light protein in blood as a potential biomarker of neurodegeneration in Huntington’s disease: a retrospective cohort analysis. Lancet Neurol 16:601–609. https://doi.org/10.1016/s1474-4422(17)30124-2
CAS
Article
PubMed
PubMed Central
Google Scholar
Calsolaro V, Edison P (2016) Neuroinflammation in Alzheimer’s disease: current evidence and future directions. Alzheimers Dement 12:719–732. https://doi.org/10.1016/j.jalz.2016.02.010
Article
PubMed
Google Scholar
Carroll CM, Li YM (2016) Physiological and pathological roles of the γ-secretase complex. Brain Res Bull 126:199–206. https://doi.org/10.1016/j.brainresbull.2016.04.019
CAS
Article
PubMed
PubMed Central
Google Scholar
Castrillo JI, Lista S, Hampel H, Ritchie CW (2018) Systems biology methods for Alzheimer’s disease research toward molecular signatures, subtypes, and stages and precision medicine: application in cohort studies and trials. Methods Mol Biol 1750:31–66. https://doi.org/10.1007/978-1-4939-7704-8_3
CAS
Article
PubMed
Google Scholar
Catafau AM, Bullich S (2017) Non-amyloid PET imaging biomarkers for neurodegeneration: focus on tau, alpha-synuclein and neuroinflammation. Curr Alzheimer Res 14:169–177
CAS
Article
PubMed
Google Scholar
Chakraborty A, de Wit NM, van der Flier WM, de Vries HE (2017) The blood brain barrier in Alzheimer’s disease. Vascul Pharmacol 89:12–18. https://doi.org/10.1016/j.vph.2016.11.008
CAS
Article
PubMed
Google Scholar
Chang KA, Shin KY, Nam E, Lee YB, Moon C, Suh YH et al (2016) Plasma soluble neuregulin-1 as a diagnostic biomarker for Alzheimer’s disease. Neurochem Int 97:1–7. https://doi.org/10.1016/j.neuint.2016.04.012
CAS
Article
PubMed
Google Scholar
Chang XL, Tan MS, Tan L, Yu JT (2016) The role of TDP-43 in Alzheimer’s disease. Mol Neurobiol 53:3349–3359. https://doi.org/10.1007/s12035-015-9264-5
CAS
Article
PubMed
Google Scholar
Chen-Plotkin AS, Lee VM, Trojanowski JQ (2010) TAR DNA-binding protein 43 in neurodegenerative disease. Nat Rev Neurol 6:211–220. https://doi.org/10.1038/nrneurol.2010.18
CAS
Article
PubMed
PubMed Central
Google Scholar
Chen Z, Trapp BD (2016) Microglia and neuroprotection. J Neurochem 136(Suppl 1):10–17. https://doi.org/10.1111/jnc.13062
CAS
Article
PubMed
Google Scholar
Chiasserini D, Biscetti L, Eusebi P, Salvadori N, Frattini G, Simoni S et al (2017) Differential role of CSF fatty acid binding protein 3, α-synuclein, and Alzheimer’s disease core biomarkers in Lewy body disorders and Alzheimer’s dementia. Alzheimers Res Ther 9:52. https://doi.org/10.1186/s13195-017-0276-4
CAS
Article
PubMed
PubMed Central
Google Scholar
Choi J, Lee HW, Suk K (2011) Plasma level of chitinase 3-like 1 protein increases in patients with early Alzheimer’s disease. J Neurol 258:2181–2185. https://doi.org/10.1007/s00415-011-6087-9
CAS
Article
PubMed
Google Scholar
Cornett CR, Markesbery WR, Ehmann WD (1998) Imbalances of trace elements related to oxidative damage in Alzheimer’s disease brain. Neurotoxicology 19:339–345
CAS
PubMed
Google Scholar
Corso G, Cristofano A, Sapere N, la Marca G, Angiolillo A, Vitale M et al (2017) Serum amino acid profiles in normal subjects and in patients with or at risk of Alzheimer dementia. Dement Geriatr Cogn Dis Extra 7:143–159. https://doi.org/10.1159/000466688
Article
PubMed
PubMed Central
Google Scholar
Craig-Schapiro R, Perrin RJ, Roe CM, Xiong C, Carter D, Cairns NJ et al (2010) YKL-40: a novel prognostic fluid biomarker for preclinical Alzheimer’s disease. Biol Psychiatry 68:903–912. https://doi.org/10.1016/j.biopsych.2010.08.025
CAS
Article
PubMed
PubMed Central
Google Scholar
Cristóvão JS, Santos R, Gomes CM (2016) Metals and neuronal metal binding proteins implicated in Alzheimer’s disease. Oxid Med Cell Longev 2016:9812178. https://doi.org/10.1155/2016/9812178
CAS
Article
PubMed
PubMed Central
Google Scholar
Cruchaga C, Kauwe JS, Harari O, Jin SC, Cai Y, Karch CM et al (2013) GWAS of cerebrospinal fluid tau levels identifies risk variants for Alzheimer’s disease. Neuron 78:256–268. https://doi.org/10.1016/j.neuron.2013.02.026
CAS
Article
PubMed
PubMed Central
Google Scholar
Cummings J, Lee G, Mortsdorf T, Ritter A, Zhong K (2017) Alzheimer’s disease drug development pipeline: 2017. Alzheimers Dement (N Y) 3:367–384. https://doi.org/10.1016/j.trci.2017.05.002
Article
Google Scholar
Dage JL, Wennberg AM, Airey DC, Hagen CE, Knopman DS, Machulda MM et al (2016) Levels of tau protein in plasma are associated with neurodegeneration and cognitive function in a population-based elderly cohort. Alzheimers Dement 12:1226–1234. https://doi.org/10.1016/j.jalz.2016.06.001
Article
PubMed
PubMed Central
Google Scholar
Davidsson P, Blennow K (1998) Neurochemical dissection of synaptic pathology in Alzheimer’s disease. Int Psychogeriatr 10:11–23
CAS
Article
PubMed
Google Scholar
De Vos A, Jacobs D, Struyfs H, Fransen E, Andersson K, Portelius E et al (2015) C-terminal neurogranin is increased in cerebrospinal fluid but unchanged in plasma in Alzheimer’s disease. Alzheimers Dement 11:1461–1469. https://doi.org/10.1016/j.jalz.2015.05.012
Article
PubMed
Google Scholar
De Vos A, Struyfs H, Jacobs D, Fransen E, Klewansky T, De Roeck E et al (2016) The cerebrospinal fluid neurogranin/BACE1 ratio is a potential correlate of cognitive decline in Alzheimer’s disease. J Alzheimers Dis 53:1523–1538. https://doi.org/10.3233/jad-160227
Article
PubMed
PubMed Central
Google Scholar
Degerman Gunnarsson M, Ingelsson M, Blennow K, Basun H, Lannfelt L, Kilander L (2016) High tau levels in cerebrospinal fluid predict nursing home placement and rapid progression in Alzheimer’s disease. Alzheimers Res Ther 8:22. https://doi.org/10.1186/s13195-016-0191-0
CAS
Article
PubMed
PubMed Central
Google Scholar
Delgado-Alvarado M, Gago B, Gorostidi A, Jiménez-Urbieta H, Dacosta-Aguayo R, Navalpotro-Gómez I et al (2017) Tau/alpha-synuclein ratio and inflammatory proteins in Parkinson’s disease: an exploratory study. Mov Disord 32:1066–1073. https://doi.org/10.1002/mds.27001
CAS
Article
PubMed
Google Scholar
Desikan RS, Thompson WK, Holland D, Hess CP, Brewer JB, Zetterberg H et al (2013) Heart fatty acid binding protein and Aβ-associated Alzheimer’s neurodegeneration. Mol Neurodegener 8:39. https://doi.org/10.1186/1750-1326-8-39
CAS
Article
PubMed
PubMed Central
Google Scholar
Deters KD, Risacher SL, Kim S, Nho K, West JD, Blennow K et al (2017) Plasma tau association with brain atrophy in mild cognitive impairment and Alzheimer’s disease. J Alzheimers Dis 58:1245–1254. https://doi.org/10.3233/JAD-161114
CAS
Article
PubMed
PubMed Central
Google Scholar
Di Marco LY, Venneri A, Farkas E, Evans PC, Marzo A, Frangi AF (2015) Vascular dysfunction in the pathogenesis of Alzheimer’s disease—a review of endothelium-mediated mechanisms and ensuing vicious circles. Neurobiol Dis 82:593–606. https://doi.org/10.1016/j.nbd.2015.08.014
CAS
Article
PubMed
Google Scholar
Díez-Guerra FJ (2010) Neurogranin, a link between calcium/calmodulin and protein kinase C signaling in synaptic plasticity. IUBMB Life 62:597–606. https://doi.org/10.1002/iub.357
CAS
Article
PubMed
Google Scholar
Disanto G, Barro C, Benkert P, Naegelin Y, Schädelin S, Giardiello A et al (2017) Serum neurofilament light: a biomarker of neuronal damage in multiple sclerosis. Ann Neurol 81:857–870. https://doi.org/10.1002/ana.24954
CAS
Article
PubMed
PubMed Central
Google Scholar
Doody RS, Thomas RG, Farlow M, Iwatsubo T, Vellas B, Joffe S et al (2014) Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease. N Engl J Med 370:311–321. https://doi.org/10.1056/NEJMoa1312889
CAS
Article
PubMed
Google Scholar
Dorey A, Perret-Liaudet A, Tholance Y, Fourier A, Quadrio I (2015) Cerebrospinal fluid Aβ40 improves the interpretation of Aβ42 concentration for diagnosing Alzheimer’s disease. Front Neurol 6:247. https://doi.org/10.3389/fneur.2015.00247
Article
PubMed
PubMed Central
Google Scholar
Downes EC, Robson J, Grailly E, Abdel-All Z, Xuereb J, Brayne C et al (2008) Loss of synaptophysin and synaptosomal-associated protein 25-kDa (SNAP-25) in elderly down syndrome individuals. Neuropathol Appl Neurobiol 34:12–22. https://doi.org/10.1111/j.1365-2990.2007.00899.x
CAS
Article
PubMed
Google Scholar
Dubois B, Feldman HH, Jacova C, Hampel H, Molinuevo JL, Blennow K et al (2014) Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol 13:614–629. https://doi.org/10.1016/s1474-4422(14)70090-0
Article
PubMed
Google Scholar
Engelborghs S, Niemantsverdriet E, Struyfs H, Blennow K, Brouns R, Comabella M et al (2017) Consensus guidelines for lumbar puncture in patients with neurological diseases. Alzheimers Dement (Amst) 8:111–126. https://doi.org/10.1016/j.dadm.2017.04.007
Article
Google Scholar
European Medicines Agency, Committee for Medicinal Products for Human Use (2011) Qualification opinion of Alzheimer’s disease novel methodologies/biomarkers for the use of CSF amyloid beta 1-42 and t-tau signature and/or PET-amyloid imaging (positive/negative) as biomarkers for enrichment, for use in regulatory clinical trials in mild and moderate Alzheimer’s disease. http://www.ema.europa.eu/docs/en_GB/document_library/Regulatory_and_procedural_guideline/2011/12/WC500118365.pdf
European Medicines Agency, Committee for Medicinal Products for Human Use (2018) Guideline on the clinical investigation of medicines for the treatment of Alzheimer’s disease. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2018/02/WC500244609.pdf
Ewers M, Cheng X, Zhong Z, Nural HF, Walsh C, Meindl T et al (2011) Increased CSF-BACE1 activity associated with decreased hippocampus volume in Alzheimer’s disease. J Alzheimers Dis 25:373–381. https://doi.org/10.3233/jad-2011-091153
CAS
Article
PubMed
Google Scholar
Ewers M, Mattsson N, Minthon L, Molinuevo JL, Antonell A, Popp J et al (2015) CSF biomarkers for the differential diagnosis of Alzheimer’s disease: a large-scale international multicenter study. Alzheimers Dement 11:1306–1315. https://doi.org/10.1016/j.jalz.2014.12.006
Article
PubMed
Google Scholar
Ewers M, Zhong Z, Bürger K, Wallin A, Blennow K, Teipel SJ et al (2008) Increased CSF-BACE 1 activity is associated with ApoE-ε4 genotype in subjects with mild cognitive impairment and Alzheimer’s disease. Brain 131:1252–1258. https://doi.org/10.1093/brain/awn034
Article
PubMed
Google Scholar
Fagan AM, Mintun MA, Mach RH, Lee SY, Dence CS, Shah AR et al (2006) Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Aβ42 in humans. Ann Neurol 59:512–519. https://doi.org/10.1002/ana.20730
CAS
Article
PubMed
Google Scholar
Fagan AM, Mintun MA, Shah AR, Aldea P, Roe CM, Mach RH et al (2009) Cerebrospinal fluid tau and ptau(181) increase with cortical amyloid deposition in cognitively normal individuals: implications for future clinical trials of Alzheimer’s disease. EMBO Mol Med 1:371–380. https://doi.org/10.1002/emmm.200900048
CAS
Article
PubMed
PubMed Central
Google Scholar
Fagan AM, Roe CM, Xiong C, Mintun MA, Morris JC, Holtzman DM (2007) Cerebrospinal fluid tau/β-amyloid(42) ratio as a prediction of cognitive decline in nondemented older adults. Arch Neurol 64:343–349. https://doi.org/10.1001/archneur.64.3.noc60123
Article
PubMed
Google Scholar
Fagan AM, Shaw LM, Xiong C, Vanderstichele H, Mintun MA, Trojanowski JQ et al (2011) Comparison of analytical platforms for cerebrospinal fluid measures of β-amyloid 1-42, total tau, and p-tau181 for identifying Alzheimer disease amyloid plaque pathology. Arch Neurol 68:1137–1144. https://doi.org/10.1001/archneurol.2011.105
Article
PubMed
PubMed Central
Google Scholar
Fairfoul G, McGuire LI, Pal S, Ironside JW, Neumann J, Christie S et al (2016) Alpha-synuclein RT-QuIC in the CSF of patients with alpha-synucleinopathies. Ann Clin Transl Neurol 3:812–818. https://doi.org/10.1002/acn3.338
CAS
Article
PubMed
PubMed Central
Google Scholar
Fandos N, Pérez-Grijalba V, Pesini P, Olmos S, Bossa M, Villemagne VL et al (2017) Plasma amyloid β 42/40 ratios as biomarkers for amyloid β cerebral deposition in cognitively normal individuals. Alzheimers Dement (Amst) 8:179–187. https://doi.org/10.1016/j.dadm.2017.07.004
Article
Google Scholar
Farlow M, Arnold SE, van Dyck CH, Aisen PS, Snider BJ, Porsteinsson AP et al (2012) Safety and biomarker effects of solanezumab in patients with Alzheimer’s disease. Alzheimers Dement 8:261–271. https://doi.org/10.1016/j.jalz.2011.09.224
CAS
Article
PubMed
Google Scholar
Fath T, Eidenmuller J, Brandt R (2002) Tau-mediated cytotoxicity in a pseudohyperphosphorylation model of Alzheimer’s disease. J Neurosci 22:9733–9741
CAS
Article
PubMed
Google Scholar
Feneberg E, Steinacker P, Lehnert S, Schneider A, Walther P, Thal DR et al (2014) Limited role of free TDP-43 as a diagnostic tool in neurodegenerative diseases. Amyotroph Lateral Scler Frontotemporal Degener 15:351–356. https://doi.org/10.3109/21678421.2014.905606
CAS
Article
PubMed
Google Scholar
Ferreira D, Rivero-Santana A, Perestelo-Pérez L, Westman E, Wahlund LO, Sarría A et al (2014) Improving CSF biomarkers’ performance for predicting progression from mild cognitive impairment to Alzheimer’s disease by considering different confounding factors: a meta-analysis. Front Aging Neurosci 6:287. https://doi.org/10.3389/fnagi.2014.00287
CAS
Article
PubMed
PubMed Central
Google Scholar
Ferretti M, Lulita M, Cavedo E, Chiesa P, Schumacher Dimech A, Chadha Santuccione A et al (2018) Sex-specific phenotypes of Alzheimer’s disease: the gateway to precision neurology. Nat Rev Neurol 14:457–469. https://doi.org/10.1038/s41582-018-0032-9
Article
PubMed
Google Scholar
Finnema SJ, Nabulsi NB, Eid T, Detyniecki K, Lin SF, Chen MK et al (2016) Imaging synaptic density in the living human brain. Sci Transl Med 8:348ra396. https://doi.org/10.1126/scitranslmed.aaf6667
CAS
Article
Google Scholar
Fleck D, van Bebber F, Colombo A, Galante C, Schwenk BM, Rabe L et al (2013) Dual cleavage of neuregulin 1 type III by BACE1 and ADAM17 liberates its EGF-like domain and allows paracrine signaling. J Neurosci 33:7856–7869. https://doi.org/10.1523/JNEUROSCI.3372-12.2013
CAS
Article
PubMed
Google Scholar
Food and Drug Administration (2011) Guidance for industry—E16 biomarkers related to drug or biotechnology product development: context, structure, and format of qualification submissions. https://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm267449.pdf
Food and Drug Administration (2018) Early Alzheimer’s disease: developing drugs for treatment; draft guidance for industry. https://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM596728.pdf
Foulds P, McAuley E, Gibbons L, Davidson Y, Pickering-Brown SM, Neary D et al (2008) TDP-43 protein in plasma may index TDP-43 brain pathology in Alzheimer’s disease and frontotemporal lobar degeneration. Acta Neuropathol 116:141–146. https://doi.org/10.1007/s00401-008-0389-8
CAS
Article
PubMed
PubMed Central
Google Scholar
Fourier A, Portelius E, Zetterberg H, Blennow K, Quadrio I, Perret-Liaudet A (2015) Pre-analytical and analytical factors influencing Alzheimer’s disease cerebrospinal fluid biomarker variability. Clin Chim Acta 449:9–15. https://doi.org/10.1016/j.cca.2015.05.024
CAS
Article
PubMed
Google Scholar
Frank RA, Galasko D, Hampel H, Hardy J, de Leon MJ, Mehta PD et al (2003) Biological markers for therapeutic trials in Alzheimer’s disease. Proceedings of the biological markers working group; NIA initiative on neuroimaging in Alzheimer’s disease. Neurobiol Aging 24:521–536
Frisoni GB, Boccardi M, Barkhof F, Blennow K, Cappa S, Chiotis K et al (2017) Strategic roadmap for an early diagnosis of Alzheimer’s disease based on biomarkers. Lancet Neurol 16:661–676. https://doi.org/10.1016/S1474-4422(17)30159-X
Article
PubMed
Google Scholar
Galimberti D, Schoonenboom N, Scheltens P, Fenoglio C, Bouwman F, Venturelli E et al (2006) Intrathecal chemokine synthesis in mild cognitive impairment and Alzheimer disease. Arch Neurol 63:538–543. https://doi.org/10.1001/archneur.63.4.538
Article
PubMed
Google Scholar
Galimberti D, Venturelli E, Fenoglio C, Lovati C, Guidi I, Scalabrini D et al (2007) IP-10 serum levels are not increased in mild cognitive impairment and Alzheimer’s disease. Eur J Neurol 14:e3–e4. https://doi.org/10.1111/j.1468-1331.2006.01637.x
CAS
Article
PubMed
Google Scholar
Gendron TF, C9ORF72 Neurofilament Study Group, Daughrity LM, Heckman MG, Diehl NN, Wuu J et al (2017) Phosphorylated neurofilament heavy chain: a biomarker of survival for C9ORF72-associated amyotrophic lateral sclerosis. Ann Neurol 82:139–146. https://doi.org/10.1002/ana.24980
Gervaise-Henry C, Watfa G, Albuisson E, Kolodziej A, Dousset B, Olivier JL et al (2017) Cerebrospinal fluid Aβeta42/Aβeta40 as a means to limiting tube- and storage-dependent pre-analytical variability in clinical setting. J Alzheimers Dis 57:437–445. https://doi.org/10.3233/jad-160865
CAS
Article
PubMed
Google Scholar
Giasson BI, Forman MS, Higuchi M, Golbe LI, Graves CL, Kotzbauer PT et al (2003) Initiation and synergistic fibrillization of tau and alpha-synuclein. Science 300:636–640. https://doi.org/10.1126/science.1082324
CAS
Article
PubMed
Google Scholar
Gispert JD, Monte GC, Suárez-Calvet M, Falcon C, Tucholka A, Rojas S et al (2017) The APOE ε4 genotype modulates CSF YKL-40 levels and their structural brain correlates in the continuum of Alzheimer’s disease but not those of sTREM2. Alzheimers Dement (Amst) 6:50–59. https://doi.org/10.1016/j.dadm.2016.12.002
Article
Google Scholar
Gispert JD, Suárez-Calvet M, Monté GC, Tucholka A, Falcon C, Rojas S et al (2016) Cerebrospinal fluid sTREM2 levels are associated with gray matter volume increases and reduced diffusivity in early Alzheimer’s disease. Alzheimers Dement 12:1259–1272. https://doi.org/10.1016/j.jalz.2016.06.005
Article
PubMed
Google Scholar
Glenner GG, Wong CW (1984) Alzheimer’s disease and Down’s syndrome: sharing of a unique cerebrovascular amyloid fibril protein. Biochem Biophys Res Commun 122:1131–1135
CAS
Article
PubMed
Google Scholar
Glenner GG, Wong CW (1984) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120:885–890
CAS
Article
PubMed
Google Scholar
Goetzl EJ, Kapogiannis D, Schwartz JB, Lobach IV, Goetzl L, Abner EL et al (2016) Decreased synaptic proteins in neuronal exosomes of frontotemporal dementia and Alzheimer’s disease. FASEB J 30:4141–4148. https://doi.org/10.1096/fj.201600816R
CAS
Article
PubMed
PubMed Central
Google Scholar
Goossens J, Vanmechelen E, Trojanowski JQ, Lee VM, Van Broeckhoven C, van der Zee J et al (2015) TDP-43 as a possible biomarker for frontotemporal lobar degeneration: a systematic review of existing antibodies. Acta Neuropathol Commun 3:15. https://doi.org/10.1186/s40478-015-0195-1
CAS
Article
PubMed
PubMed Central
Google Scholar
Goozee K, Chatterjee P, James I, Shen K, Sohrabi HR, Asih PR et al (2018) Elevated plasma ferritin in elderly individuals with high neocortical amyloid-beta load. Mol Psychiatry 23:1807–1812. https://doi.org/10.1038/mp.2017.146
CAS
Article
PubMed
Google Scholar
Gravina SA, Ho L, Eckman CB, Long KE, Otvos L Jr, Younkin LH et al (1995) Amyloid beta protein (A beta) in Alzheimer’s disease brain. Biochemical and immunocytochemical analysis with antibodies specific for forms ending at A beta 40 or A beta 42(43). J Biol Chem 270:7013–7016
CAS
Article
PubMed
Google Scholar
Grimmer T, Riemenschneider M, Förstl H, Henriksen G, Klunk WE, Mathis CA et al (2009) Beta amyloid in Alzheimer’s disease: increased deposition in brain is reflected in reduced concentration in cerebrospinal fluid. Biol Psychiatry 65:927–934. https://doi.org/10.1016/j.biopsych.2009.01.027
CAS
Article
PubMed
PubMed Central
Google Scholar
Groblewska M, Muszynski P, Wojtulewska-Supron A, Kulczynska-Przybik A, Mroczko B (2015) The role of visinin-like protein-1 in the pathophysiology of Alzheimer’s disease. J Alzheimers Dis 47:17–32. https://doi.org/10.3233/jad-150060
CAS
Article
PubMed
Google Scholar
Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E et al (2013) TREM2 variants in Alzheimer’s disease. N Engl J Med 368:117–127. https://doi.org/10.1056/NEJMoa1211851
CAS
Article
PubMed
Google Scholar
Gunn AP, Masters CL, Cherny RA (2010) Pyroglutamate-Aβ: role in the natural history of Alzheimer’s disease. Int J Biochem Cell Biol 42:1915–1918. https://doi.org/10.1016/j.biocel.2010.08.015
CAS
Article
PubMed
Google Scholar
Guo JL, Lee VM (2014) Cell-to-cell transmission of pathogenic proteins in neurodegenerative diseases. Nat Med 20:130–138. https://doi.org/10.1038/nm.3457
CAS
Article
PubMed
PubMed Central
Google Scholar
Guo LH, Alexopoulos P, Perneczky R (2013) Heart-type fatty acid binding protein and vascular endothelial growth factor: cerebrospinal fluid biomarker candidates for Alzheimer’s disease. Eur Arch Psychiatry Clin Neurosci 263:553–560. https://doi.org/10.1007/s00406-013-0405-4
Article
PubMed
Google Scholar
Guo R, Fan G, Zhang J, Wu C, Du Y, Ye H et al (2017) A 9-microRNA signature in serum serves as a noninvasive biomarker in early diagnosis of Alzheimer’s disease. J Alzheimers Dis 60:1365–1377. https://doi.org/10.3233/JAD-170343
CAS
Article
PubMed
Google Scholar
Hamilton RL (2000) Lewy bodies in Alzheimer’s disease: a neuropathological review of 145 cases using alpha-synuclein immunohistochemistry. Brain Pathol 10:378–384
CAS
Article
PubMed
Google Scholar
Hampel H, Bürger K, Teipel SJ, Bokde AL, Zetterberg H, Blennow K (2008) Core candidate neurochemical and imaging biomarkers of Alzheimer’s disease. Alzheimers Dement 4:38–48. https://doi.org/10.1016/j.jalz.2007.08.006
CAS
Article
PubMed
Google Scholar
Hampel H, Frank R, Broich K, Teipel SJ, Katz RG, Hardy J et al (2010) Biomarkers for Alzheimer’s disease: academic, industry and regulatory perspectives. Nat Rev Drug Discov 9:560–574. https://doi.org/10.1038/nrd3115
CAS
Article
PubMed
Google Scholar
Hampel H, Lista S, Khachaturian ZS (2012) Development of biomarkers to chart all Alzheimer’s disease stages: the royal road to cutting the therapeutic Gordian Knot. Alzheimers Dement 8:312–336. https://doi.org/10.1016/j.jalz.2012.05.2116
CAS
Article
PubMed
Google Scholar
Hampel H, Lista S, Teipel SJ, Garaci F, Nisticó R, Blennow K et al (2014) Perspective on future role of biological markers in clinical therapy trials of Alzheimer’s disease: a long-range point of view beyond 2020. Biochem Pharmacol 88:426–449. https://doi.org/10.1016/j.bcp.2013.11.009
CAS
Article
PubMed
Google Scholar
Hampel H, O’Bryant SE, Castrillo JI, Ritchie C, Rojkova K, Broich K et al (2016) PRECISION MEDICINE—the Golden Gate for detection, treatment and prevention of Alzheimer’s disease. J Prev Alzheimers Dis 3:243–259. https://doi.org/10.14283/jpad.2016.112
CAS
Article
PubMed
PubMed Central
Google Scholar
Hampel H, O’Bryant SE, Durrleman S, Younesi E, Rojkova K, Escott-Price V et al (2017) A precision medicine initiative for Alzheimer’s disease: the road ahead to biomarker-guided integrative disease modeling. Climacteric 20:107–118. https://doi.org/10.1080/13697137.2017.1287866
CAS
Article
PubMed
Google Scholar
Hampel H, O’Bryant SE, Molinuevo JL, Zetterberg H, Masters CL, Lista S et al (2018) Blood-based biomarkers for Alzheimer’s disease: mapping the road to the clinic. Nat Rev Neurol 14:639–652. https://doi.org/10.1038/s41582-018-0079-7
Article
PubMed
Google Scholar
Hampel H, Toschi N, Babiloni C, Baldacci F, Black KL, Bokde ALW et al (2018) Revolution of Alzheimer precision neurology. Passageway of systems biology and neurophysiology. J Alzheimers Dis 64(Suppl 1):S47–S105. https://doi.org/10.3233/JAD-179932
Article
PubMed
PubMed Central
Google Scholar
Hampel H, Vergallo A, Aguilar LF, Benda N, Broich K, Cuello AC et al (2018) Precision pharmacology for Alzheimer’s disease. Pharmacol Res 130:331–365. https://doi.org/10.1016/j.phrs.2018.02.014
CAS
Article
PubMed
Google Scholar
Han J, Pluhackova K, Böckmann RA (2017) The multifaceted role of SNARE proteins in membrane fusion. Front Physiol 8:5. https://doi.org/10.3389/fphys.2017.00005
Article
PubMed
PubMed Central
Google Scholar
Hansson O, Hall S, Ohrfelt A, Zetterberg H, Blennow K, Minthon L et al (2014) Levels of cerebrospinal fluid α-synuclein oligomers are increased in Parkinson’s disease with dementia and dementia with Lewy bodies compared to Alzheimer’s disease. Alzheimers Res Ther 6:25. https://doi.org/10.1186/alzrt255
CAS
Article
PubMed
PubMed Central
Google Scholar
Hansson O, Zetterberg H, Buchhave P, Londos E, Blennow K, Minthon L (2006) Association between CSF biomarkers and incipient Alzheimer’s disease in patients with mild cognitive impairment: a follow-up study. Lancet Neurol 5:228–234. https://doi.org/10.1016/S1474-4422(06)70355-6
CAS
Article
PubMed
Google Scholar
Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256:184–185
CAS
Article
PubMed
Google Scholar
Hare D, Ayton S, Bush A, Lei P (2013) A delicate balance: iron metabolism and diseases of the brain. Front Aging Neurosci 5:34. https://doi.org/10.3389/fnagi.2013.00034
CAS
Article
PubMed
PubMed Central
Google Scholar
He Z, Guo JL, McBride JD, Narasimhan S, Kim H, Changolkar L et al (2018) Amyloid-β plaques enhance Alzheimer’s brain tau-seeded pathologies by facilitating neuritic plaque tau aggregation. Nat Med 24:29–38. https://doi.org/10.1038/nm.4443
CAS
Article
PubMed
Google Scholar
Heinonen O, Soininen H, Sorvari H, Kosunen O, Paljärvi L, Koivisto E et al (1995) Loss of synaptophysin-like immunoreactivity in the hippocampal formation is an early phenomenon in Alzheimer’s disease. Neuroscience 64:375–384
CAS
Article
PubMed
Google Scholar
Hellwig K, Kvartsberg H, Portelius E, Andreasson U, Oberstein TJ, Lewczuk P et al (2015) Neurogranin and YKL-40: independent markers of synaptic degeneration and neuroinflammation in Alzheimer’s disease. Alzheimers Res Ther 7:74. https://doi.org/10.1186/s13195-015-0161-y
CAS
Article
PubMed
PubMed Central
Google Scholar
Henjum K, Almdahl IS, Årskog V, Minthon L, Hansson O, Fladby T et al (2016) Cerebrospinal fluid soluble TREM2 in aging and Alzheimer’s disease. Alzheimers Res Ther 8:17. https://doi.org/10.1186/s13195-016-0182-1
CAS
Article
PubMed
PubMed Central
Google Scholar
Henriksen K, O’Bryant SE, Hampel H, Trojanowski JQ, Montine TJ, Jeromin A et al (2014) The future of blood-based biomarkers for Alzheimer’s disease. Alzheimers Dement 10:115–131. https://doi.org/10.1016/j.jalz.2013.01.013
Article
PubMed
Google Scholar
Heslegrave A, Heywood W, Paterson R, Magdalinou N, Svensson J, Johansson P et al (2016) Increased cerebrospinal fluid soluble TREM2 concentration in Alzheimer’s disease. Mol Neurodegener 11:3. https://doi.org/10.1186/s13024-016-0071-x
CAS
Article
PubMed
PubMed Central
Google Scholar
Hesse R, Wahler A, Gummert P, Kirschmer S, Otto M, Tumani H et al (2016) Decreased IL-8 levels in CSF and serum of AD patients and negative correlation of MMSE and IL-1β. BMC Neurol 16:185. https://doi.org/10.1186/s12883-016-0707-z
CAS
Article
PubMed
PubMed Central
Google Scholar
Hölttä M, Hansson O, Andreasson U, Hertze J, Minthon L, Nägga K et al (2013) Evaluating amyloid-β oligomers in cerebrospinal fluid as a biomarker for Alzheimer’s disease. PLoS One 8:e66381. https://doi.org/10.1371/journal.pone.0066381
CAS
Article
PubMed
PubMed Central
Google Scholar
Horrocks MH, Lee SF, Gandhi S, Magdalinou NK, Chen SW, Devine MJ et al (2016) Single-molecule imaging of individual amyloid protein aggregates in human biofluids. ACS Chem Neurosci 7:399–406. https://doi.org/10.1021/acschemneuro.5b00324
CAS
Article
PubMed
PubMed Central
Google Scholar
Hu N, Tan MS, Yu JT, Sun L, Tan L, Wang YL et al (2014) Increased expression of TREM2 in peripheral blood of Alzheimer’s disease patients. J Alzheimers Dis 38:497–501. https://doi.org/10.3233/jad-130854
CAS
Article
PubMed
Google Scholar
Hu WT, Chen-Plotkin A, Arnold SE, Grossman M, Clark CM, Shaw LM et al (2010) Novel CSF biomarkers for Alzheimer’s disease and mild cognitive impairment. Acta Neuropathol 119:669–678. https://doi.org/10.1007/s00401-010-0667-0
CAS
Article
PubMed
PubMed Central
Google Scholar
Huang X, Atwood CS, Hartshorn MA, Multhaup G, Goldstein LE, Scarpa RC et al (1999) The A beta peptide of Alzheimer’s disease directly produces hydrogen peroxide through metal ion reduction. Biochemistry 38:7609–7616. https://doi.org/10.1021/bi990438f
CAS
Article
PubMed
Google Scholar
Hulstaert F, Blennow K, Ivanoiu A, Schoonderwaldt HC, Riemenschneider M, De Deyn PP et al (1999) Improved discrimination of AD patients using β-amyloid(1-42) and tau levels in CSF. Neurology 52:1555–1562
CAS
Article
PubMed
Google Scholar
Huynh RA, Mohan C (2017) Alzheimer’s disease: biomarkers in the genome, blood, and cerebrospinal fluid. Front Neurol 8:102. https://doi.org/10.3389/fneur.2017.00102
Article
PubMed
PubMed Central
Google Scholar
Inekci D, Henriksen K, Linemann T, Karsdal MA, Habib A, Bisgaard C et al (2015) Serum fragments of tau for the differential diagnosis of Alzheimer’s disease. Curr Alzheimer Res 12:829–836
CAS
Article
PubMed
Google Scholar
Ingelsson M (2016) Alpha-synuclein oligomers-neurotoxic molecules in Parkinson’s disease and other Lewy body disorders. Front Neurosci 10:408. https://doi.org/10.3389/fnins.2016.00408
Article
PubMed
PubMed Central
Google Scholar
Irwin DJ (2016) Tauopathies as clinicopathological entities. Parkinsonism Relat Disord 22(Suppl 1):S29–S33. https://doi.org/10.1016/j.parkreldis.2015.09.020
Article
PubMed
Google Scholar
Isaac M, Vamvakas S, Abadie E, Jonsson B, Gispen C, Pani L (2011) Qualification opinion of novel methodologies in the predementia stage of Alzheimer’s disease: cerebro-spinal-fluid related biomarkers for drugs affecting amyloid burden—regulatory considerations by European Medicines Agency focusing in improving benefit/risk in regulatory trials. Eur Neuropsychopharmacol 21:781–788. https://doi.org/10.1016/j.euroneuro.2011.08.003
CAS
Article
PubMed
Google Scholar
Iturria-Medina Y, Sotero RC, Toussaint PJ, Mateos-Pérez JM, Evans AC, Alzheimer’s Disease Neuroimaging Initiative (2016) Early role of vascular dysregulation on late-onset Alzheimer’s disease based on multifactorial data-driven analysis. Nat Commun 7:11934. https://doi.org/10.1038/ncomms11934
CAS
Article
PubMed
PubMed Central
Google Scholar
Iwatsubo T, Odaka A, Suzuki N, Mizusawa H, Nukina N, Ihara Y (1994) Visualization of Aβ42(43) and Aβ40 in senile plaques with end-specific Aβ monoclonals: evidence that an initially deposited species is Aβ42(43). Neuron 13:45–53
CAS
Article
PubMed
Google Scholar
Jack CR Jr, Knopman DS, Jagust WJ, Petersen RC, Weiner MW, Aisen PS et al (2013) Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol 12:207–216. https://doi.org/10.1016/S1474-4422(12)70291-0
CAS
Article
PubMed
PubMed Central
Google Scholar
Jackson K, Barisone GA, Diaz E, Jin LW, DeCarli C, Despa F (2013) Amylin deposition in the brain: a second amyloid in Alzheimer disease? Ann Neurol 74:517–526. https://doi.org/10.1002/ana.23956
CAS
Article
PubMed
Google Scholar
Jagust WJ, Landau SM, Shaw LM, Trojanowski JQ, Koeppe RA, Reiman EM et al (2009) Relationships between biomarkers in aging and dementia. Neurology 73:1193–1199. https://doi.org/10.1212/WNL.0b013e3181bc010c
CAS
Article
PubMed
PubMed Central
Google Scholar
James BD, Wilson RS, Boyle PA, Trojanowski JQ, Bennett DA, Schneider JA (2016) TDP-43 stage, mixed pathologies, and clinical Alzheimer’s-type dementia. Brain 139:2983–2993. https://doi.org/10.1093/brain/aww224
Article
PubMed
PubMed Central
Google Scholar
Janelidze S, Stomrud E, Palmqvist S, Zetterberg H, van Westen D, Jeromin A et al (2016) Plasma β-amyloid in Alzheimer’s disease and vascular disease. Sci Rep 6:26801. https://doi.org/10.1038/srep26801
CAS
Article
PubMed
PubMed Central
Google Scholar
Janelidze S, Zetterberg H, Mattsson N, Palmqvist S, Vanderstichele H, Lindberg O et al (2016) CSF Aβ42/Aβ40 and Aβ42/Aβ38 ratios: better diagnostic markers of Alzheimer disease. Ann Clin Transl Neurol 3:154–165. https://doi.org/10.1002/acn3.274
CAS
Article
PubMed
PubMed Central
Google Scholar
Jay TR, von Saucken VE, Landreth GE (2017) TREM2 in neurodegenerative diseases. Mol Neurodegener 12:56. https://doi.org/10.1186/s13024-017-0197-5
CAS
Article
PubMed
PubMed Central
Google Scholar
Josephs KA, Whitwell JL, Knopman DS, Hu WT, Stroh DA, Baker M et al (2008) Abnormal TDP-43 immunoreactivity in AD modifies clinicopathologic and radiologic phenotype. Neurology 70:1850–1857. https://doi.org/10.1212/01.wnl.0000304041.09418.b1
CAS
Article
PubMed
PubMed Central
Google Scholar
Jucker M, Walker LC (2013) Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature 501:45–51. https://doi.org/10.1038/nature12481
CAS
Article
PubMed
PubMed Central
Google Scholar
Junttila A, Kuvaja M, Hartikainen P, Siloaho M, Helisalmi S, Moilanen V et al (2016) Cerebrospinal fluid TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis patients with and without the C9ORF72 hexanucleotide expansion. Dement Geriatr Cogn Dis Extra 6:142–149. https://doi.org/10.1159/000444788
Article
PubMed
PubMed Central
Google Scholar
Kakuda N, Miyasaka T, Iwasaki N, Nirasawa T, Wada-Kakuda S, Takahashi-Fujigasaki J et al (2017) Distinct deposition of amyloid-beta species in brains with Alzheimer’s disease pathology visualized with MALDI imaging mass spectrometry. Acta Neuropathol Commun 5:73. https://doi.org/10.1186/s40478-017-0477-x
CAS
Article
PubMed
PubMed Central
Google Scholar
Kamat PK, Kalani A, Rai S, Swarnkar S, Tota S, Nath C et al (2016) Mechanism of oxidative stress and synapse dysfunction in the pathogenesis of Alzheimer’s disease: understanding the therapeutics strategies. Mol Neurobiol 53:648–661. https://doi.org/10.1007/s12035-014-9053-6
CAS
Article
PubMed
Google Scholar
Kang JH, Irwin DJ, Chen-Plotkin AS, Siderowf A, Caspell C, Coffey CS et al (2013) Association of cerebrospinal fluid β-amyloid 1-42, t-tau, p-tau181, and α-synuclein levels with clinical features of drug-naive patients with early Parkinson disease. JAMA Neurol 70:1277–1287. https://doi.org/10.1001/jamaneurol.2013.3861
Article
PubMed
PubMed Central
Google Scholar
Kang JH, Mollenhauer B, Coffey CS, Toledo JB, Weintraub D, Galasko DR et al (2016) CSF biomarkers associated with disease heterogeneity in early Parkinson’s disease: the Parkinson’s Progression Markers Initiative study. Acta Neuropathol 131:935–949. https://doi.org/10.1007/s00401-016-1552-2
CAS
Article
PubMed
PubMed Central
Google Scholar
Kapaki E, Paraskevas GP, Emmanouilidou E, Vekrellis K (2013) The diagnostic value of CSF α-synuclein in the differential diagnosis of dementia with Lewy bodies vs. normal subjects and patients with Alzheimer’s disease. PLoS One 8:e81654. https://doi.org/10.1371/journal.pone.0081654
CAS
Article
PubMed
PubMed Central
Google Scholar
Kasai T, Tokuda T, Ishii R, Ishigami N, Tsuboi Y, Nakagawa M et al (2014) Increased α-synuclein levels in the cerebrospinal fluid of patients with Creutzfeldt-Jakob disease. J Neurol 261:1203–1209. https://doi.org/10.1007/s00415-014-7334-7
CAS
Article
PubMed
Google Scholar
Kasuga K, Tokutake T, Ishikawa A, Uchiyama T, Tokuda T, Onodera O et al (2010) Differential levels of α-synuclein, β-amyloid42 and tau in CSF between patients with dementia with Lewy bodies and Alzheimer’s disease. J Neurol Neurosurg Psychiatry 81:608–610. https://doi.org/10.1136/jnnp.2009.197483
Article
PubMed
Google Scholar
Kennedy ME, Stamford AW, Chen X, Cox K, Cumming JN, Dockendorf MF et al (2016) The BACE1 inhibitor verubecestat (MK-8931) reduces CNS β-amyloid in animal models and in Alzheimer’s disease patients. Sci Transl Med 8:363ra150. https://doi.org/10.1126/scitranslmed.aad9704
CAS
Article
PubMed
Google Scholar
Kerchner G, Ayalon G, Blendstrup M, Brunstein F, Chandra P, Datwani A et al (2017) Targeting tau with RO7105705: Phase I results and design of a Phase II study in prodromal-to-mild AD. Abstract presented at the 10th Clinical Trials on Alzheimer’s Disease (CTAD). Boston (1–4 November 2017)
Kester MI, Teunissen CE, Crimmins DL, Herries EM, Ladenson JH, Scheltens P et al (2015) Neurogranin as a cerebrospinal fluid biomarker for synaptic loss in symptomatic Alzheimer disease. JAMA Neurol 72:1275–1280. https://doi.org/10.1001/jamaneurol.2015.1867
Article
PubMed
PubMed Central
Google Scholar
Kester MI, Teunissen CE, Sutphen C, Herries EM, Ladenson JH, Xiong C et al (2015) Cerebrospinal fluid VILIP-1 and YKL-40, candidate biomarkers to diagnose, predict and monitor Alzheimer’s disease in a memory clinic cohort. Alzheimers Res Ther 7:59. https://doi.org/10.1186/s13195-015-0142-1
CAS
Article
PubMed
PubMed Central
Google Scholar
Khan SS, Bloom GS (2016) Tau: the center of a signaling nexus in Alzheimer’s disease. Front Neurosci 10:31. https://doi.org/10.3389/fnins.2016.00031
Article
PubMed
PubMed Central
Google Scholar
Kim D, Kim YS, Shin DW, Park CS, Kang JH (2016) Harnessing cerebrospinal fluid biomarkers in clinical trials for treating Alzheimer’s and Parkinson’s diseases: potential and challenges. J Clin Neurol 12:381–392. https://doi.org/10.3988/jcn.2016.12.4.381
Article
PubMed
PubMed Central
Google Scholar
Kim HJ, Park KW, Kim TE, Im JY, Shin HS, Kim S et al (2015) Elevation of the plasma Aβ40/Aβ42 ratio as a diagnostic marker of sporadic early-onset Alzheimer’s disease. J Alzheimers Dis 48:1043–1050. https://doi.org/10.3233/JAD-143018
CAS
Article
PubMed
Google Scholar
Kim J, Onstead L, Randle S, Price R, Smithson L, Zwizinski C et al (2007) Aβ40 inhibits amyloid deposition in vivo. J Neurosci 27:627–633. https://doi.org/10.1523/jneurosci.4849-06.2007
CAS
Article
PubMed
Google Scholar
Kim WS, Kågedal K, Halliday GM (2014) Alpha-synuclein biology in Lewy body diseases. Alzheimers Res Ther 6:73. https://doi.org/10.1186/s13195-014-0073-2
CAS
Article
PubMed
PubMed Central
Google Scholar
Komori M, Kosa P, Stein J, Zhao V, Blake A, Cherup J et al (2017) Pharmacodynamic effects of daclizumab in the intrathecal compartment. Ann Clin Transl Neurol 4:478–490. https://doi.org/10.1002/acn3.427
CAS
Article
PubMed
PubMed Central
Google Scholar
Korff A, Liu C, Ginghina C, Shi M, Zhang J, Initiative Alzheimer’s Disease Neuroimaging (2013) α-Synuclein in cerebrospinal fluid of Alzheimer’s disease and mild cognitive impairment. J Alzheimers Dis 36:679–688. https://doi.org/10.3233/jad-130458
CAS
Article
PubMed
PubMed Central
Google Scholar
Kuhle J, Nourbakhsh B, Grant D, Morant S, Barro C, Yaldizli O et al (2017) Serum neurofilament is associated with progression of brain atrophy and disability in early MS. Neurology 88:826–831. https://doi.org/10.1212/wnl.0000000000003653
CAS
Article
PubMed
PubMed Central
Google Scholar
Kuhlmann J, Andreasson U, Pannee J, Bjerke M, Portelius E, Leinenbach A et al (2017) CSF Abeta1-42—an excellent but complicated Alzheimer’s biomarker—a route to standardisation. Clin Chim Acta 467:27–33. https://doi.org/10.1016/j.cca.2016.05.014
CAS
Article
PubMed
Google Scholar
Kuhn PH, Koroniak K, Hogl S, Colombo A, Zeitschel U, Willem M et al (2012) Secretome protein enrichment identifies physiological BACE1 protease substrates in neurons. EMBO J 31:3157–3168. https://doi.org/10.1038/emboj.2012.173
CAS
Article
PubMed
PubMed Central
Google Scholar
Kuiperij HB, Versleijen AA, Beenes M, Verwey NA, Benussi L, Paterlini A et al (2017) Tau rather than TDP-43 proteins are potential cerebrospinal fluid biomarkers for frontotemporal lobar degeneration subtypes: a pilot study. J Alzheimers Dis 55:585–595. https://doi.org/10.3233/jad-160386
CAS
Article
PubMed
Google Scholar
Kuperstein I, Broersen K, Benilova I, Rozenski J, Jonckheere W, Debulpaep M et al (2010) Neurotoxicity of Alzheimer’s disease Aβ peptides is induced by small changes in the Aβ42 to Aβ40 ratio. EMBO J 29:3408–3420. https://doi.org/10.1038/emboj.2010.211
CAS
Article
PubMed
PubMed Central
Google Scholar
Kvartsberg H, Duits FH, Ingelsson M, Andreasen N, Öhrfelt A, Andersson K et al (2015) Cerebrospinal fluid levels of the synaptic protein neurogranin correlates with cognitive decline in prodromal Alzheimer’s disease. Alzheimers Dement 11:1180–1190. https://doi.org/10.1016/j.jalz.2014.10.009
Article
PubMed
Google Scholar
Kvartsberg H, Portelius E, Andreasson U, Brinkmalm G, Hellwig K, Lelental N et al (2015) Characterization of the postsynaptic protein neurogranin in paired cerebrospinal fluid and plasma samples from Alzheimer’s disease patients and healthy controls. Alzheimers Res Ther 7:40. https://doi.org/10.1186/s13195-015-0124-3
CAS
Article
PubMed
PubMed Central
Google Scholar
Lai KSP, Liu CS, Rau A, Lanctot KL, Kohler CA, Pakosh M et al (2017) Peripheral inflammatory markers in Alzheimer’s disease: a systematic review and meta-analysis of 175 studies. J Neurol Neurosurg Psychiatry 88:876–882. https://doi.org/10.1136/jnnp-2017-316201
Article
PubMed
Google Scholar
Laterza OF, Modur VR, Crimmins DL, Olander JV, Landt Y, Lee JM et al (2006) Identification of novel brain biomarkers. Clin Chem 52:1713–1721. https://doi.org/10.1373/clinchem.2006.070912
CAS
Article
PubMed
Google Scholar
Lauridsen C, Sando SB, Moller I, Berge G, Pomary PK, Grontvedt GR et al (2017) Cerebrospinal fluid Abeta43 Is reduced in early-onset compared to late-onset Alzheimer’s Disease, but has similar diagnostic accuracy to Abeta42. Front Aging Neurosci 9:210. https://doi.org/10.3389/fnagi.2017.00210
Article
PubMed
PubMed Central
Google Scholar
Lee JM, Blennow K, Andreasen N, Laterza O, Modur V, Olander J et al (2008) The brain injury biomarker VLP-1 is increased in the cerebrospinal fluid of Alzheimer disease patients. Clin Chem 54:1617–1623. https://doi.org/10.1373/clinchem.2008.104497
CAS
Article
PubMed
PubMed Central
Google Scholar
Lee PH, Lee G, Park HJ, Bang OY, Joo IS, Huh K (2006) The plasma alpha-synuclein levels in patients with Parkinson’s disease and multiple system atrophy. J Neural Transm (Vienna) 113:1435–1439. https://doi.org/10.1007/s00702-005-0427-9
CAS
Article
Google Scholar
Lee VM, Balin BJ, Otvos L Jr, Trojanowski JQ (1991) A68: a major subunit of paired helical filaments and derivatized forms of normal tau. Science 251:675–678
CAS
Article
PubMed
Google Scholar
Lee VM, Trojanowski JQ (2001) Transgenic mouse models of tauopathies: prospects for animal models of Pick’s disease. Neurology 56:S26–S30
CAS
Article
PubMed
Google Scholar
Leitão MJ, Baldeiras I, Herukka SK, Pikkarainen M, Leinonen V, Simonsen AH et al (2015) Chasing the effects of pre-analytical confounders—a multicenter study on CSF-AD biomarkers. Front Neurol 6:153. https://doi.org/10.3389/fneur.2015.00153
Article
PubMed
PubMed Central
Google Scholar
Lemstra AW, de Beer MH, Teunissen CE, Schreuder C, Scheltens P, van der Flier WM et al (2017) Concomitant AD pathology affects clinical manifestation and survival in dementia with Lewy bodies. J Neurol Neurosurg Psychiatry 88:113–118. https://doi.org/10.1136/jnnp-2016-313775
CAS
Article
PubMed
Google Scholar
Leschik J, Welzel A, Weissmann C, Eckert A, Brandt R (2007) Inverse and distinct modulation of tau-dependent neurodegeneration by presenilin 1 and amyloid-β in cultured cortical neurons: evidence that tau phosphorylation is the limiting factor in amyloid-β-induced cell death. J Neurochem 101:1303–1315. https://doi.org/10.1111/j.1471-4159.2006.04435.x
CAS
Article
PubMed
Google Scholar
Leung YY, Toledo JB, Nefedov A, Polikar R, Raghavan N, Xie SX et al (2015) Identifying amyloid pathology-related cerebrospinal fluid biomarkers for Alzheimer’s disease in a multicohort study. Alzheimers Dement (Amst) 1:339–348. https://doi.org/10.1016/j.dadm.2015.06.008
Article
Google Scholar
Leuzy A, Chiotis K, Hasselbalch SG, Rinne JO, de Mendonça A, Otto M et al (2016) Pittsburgh compound B imaging and cerebrospinal fluid amyloid-β in a multicentre European memory clinic study. Brain 139:2540–2553. https://doi.org/10.1093/brain/aww160
Article
PubMed
PubMed Central
Google Scholar
Leverenz JB, Fishel MA, Peskind ER, Montine TJ, Nochlin D, Steinbart E et al (2006) Lewy body pathology in familial Alzheimer disease: evidence for disease- and mutation-specific pathologic phenotype. Arch Neurol 63:370–376. https://doi.org/10.1001/archneur.63.3.370
Article
PubMed
PubMed Central
Google Scholar
Lewczuk P, Lelental N, Lachmann I, Holzer M, Flach K, Brandner S et al (2017) Non-phosphorylated tau as a potential biomarker of Alzheimer’s disease: analytical and diagnostic characterization. J Alzheimers Dis 55:159–170. https://doi.org/10.3233/JAD-160448
CAS
Article
PubMed
Google Scholar
Lewczuk P, Matzen A, Blennow K, Parnetti L, Molinuevo JL, Eusebi P et al (2017) Cerebrospinal fluid Aβ42/40 corresponds better than Aβ42 to amyloid PET in Alzheimer’s disease. J Alzheimers Dis 55:813–822. https://doi.org/10.3233/jad-160722
CAS
Article
PubMed