Skip to main content

Advertisement

Log in

Anatomy of the Indian Summer Monsoon and ENSO relationships in state-of-the-art CGCMs: role of the tropical Indian Ocean

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Indian Summer Monsoon (ISM) rainfall and El Niño-Southern Oscillation (ENSO) exhibit an inverse relationship during boreal summer, which is one of the roots of ISM interannual variability and its seasonal predictability. Here we document how current climate and seasonal prediction models simulate the timing and amplitude of this ISM-ENSO teleconnection. Many Coupled General Circulation Models (CGCMs) do simulate a simultaneous inverse relationship between ENSO and ISM, though with a large spread. However, most of them show significant negative correlations before ISM, which are at odd with observations. Consistent with this systematic error, simulated Niño-3.4 Sea Surface Temperature (SST) variability has erroneous high amplitude during boreal spring and ISM rainfall variability is also too strong during the first part of ISM. The role of the Indian Ocean (IO) in modulating the ISM-ENSO relationships is further investigated using dedicated experiments with the SINTEX-F2 CGCM. Decoupled tropical Pacific and IO experiments are conducted to assess the direct relationship between ISM and IO SSTs on one hand, and the specific role of IO feedback on ENSO on the other hand. The direct effect of IO SSTs on ISM is weak and insignificant at the interannual time scale in the Pacific decoupled experiment. On the other hand, IO decoupled experiments demonstrate that El Niño shifts rapidly to La Niña when ocean–atmosphere coupling is active in the whole IO or only in its western part. This IO negative feedback is mostly active during the decaying phase of El Niño, which is accompanied by a basin-wide warming in the IO, and significantly modulates the length of ENSO events in our simulations. This IO feedback operates through a modulation of the Walker circulation over the IO, which strengthens and shifts eastward an anomalous anticyclone centered on the Philippine Sea and associated easterly wind anomalies in the equatorial western Pacific during boreal winter. In turn, these atmospheric anomalies lead to a fast ENSO turnabout via oceanic adjustement processes mediated by eastward propagating upwelling Kelvin waves. An experiment in which only the SouthEast Indian Ocean (SEIO) is decoupled, demonstrates that the equatorial SST gradient in the IO during boreal winter plays a fundamental role in the efficiency of IO feedback. In this experiment, simulated ISM-ENSO lead-lag correlations match closely the observations. This success is associated with removal of erroneous SEIO SST variability during boreal winter in the SEIO decoupled experiment. Finally, it is illustrated that most CMIP5 CGCMs exhibit similar SST errors in the SEIO during boreal winter in addition to an exagerated SEIO SST variability during boreal fall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • AchutaRao K, Sperber KR (2002) Simulation of the El Niño southern oscillation: results from the coupled model intercomparison project. Clim Dyn 19:191–209

    Google Scholar 

  • AchutaRao K, Sperber KR (2006) ENSO simulation in coupled ocean-atmosphere models: are the current models better? Clim Dyn 27:1–15. https://doi.org/10.1007/s00382-006-0119-7

    Article  Google Scholar 

  • Achuthavarier D, Kirtman BP, Krishnamurty V, Huang B (2012) Role of the Indian ocean in the ENSO-Indian Summer monsoon teleconnection in the NCEP climate forecast system. J Clim 25:2490–2508

    Google Scholar 

  • Alexander MA, Bladé I, Newman M, Lanzante JR, Lau NC, Scott JD (2002) The atmospheric bridge: the influence of ENSO teleconnections on air-sea interaction over the global oceans. J Clim 15:2205–2231

    Google Scholar 

  • Annamalai H, Xie SP, McCreary JP, Murtugudde R (2005) Impact of Indian Ocean Sea surface temperature on developing El Niño. J Clim 18:302–319

    Google Scholar 

  • Annamalai H, Hamilton K, Sperber KR (2007) The South Asian summer monsoon and its relationship with ENSO in the IPCC AR4 simulations. J Clim 20:1071–1092. https://doi.org/10.1175/JCLI4035.1

    Article  Google Scholar 

  • Annamalai H, Taguchi B, McCreary JP, Nagura M, Miyama T (2017) Systematic errors in South Asian monsoon simulation: importance of equatorial Indian Ocean processes. J Clim 30:8159–8178

    Google Scholar 

  • Ashok K, Saji NH (2007) On the impacts of ENSO and Indian Ocean dipole events on sub-regional Indian summer monsoon rainfall. Nat Hazards 42:273–285

    Google Scholar 

  • Ashok K, Guan Z, Yamagata Y (2001) Impact of the Indian Ocean dipole on the relationship between the Indian monsoon rainfall and ENSO. Geophys Res Lett 28:4499–4502

    Google Scholar 

  • Ashok K, Guan Z, Saji NH, Yamagata T (2004) Individual and combined influences of ENSO and the Indian Ocean dipole on the Indian summer monsoon. J Clim 17:3141–3155

    Google Scholar 

  • Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res 112:C11007

    Google Scholar 

  • Behera SK, Luo JJ, Masson S, Delecluse P, Gualdi S, Navarra A, Yamagata T (2005) Paramount impact of the Indian Ocean dipole on the East African short rains: a CGCM study. J Clim 18:4514–4530

    Google Scholar 

  • Behera SK, Luo JJ, Masson S, Rao SA, Sakuma H, Yamagata T (2006) A CGCM study on the interaction between IOD and ENSO. J Clim 19:1608–1705. https://doi.org/10.1175/JCLI3797.1

    Article  Google Scholar 

  • Bellenger H, Guilyardi E, Leloup J, Lengaigne M, Vialard J (2014) ENSO representation in climate models: from CMIP3 to CMIP5. Clim Dyn 42:1999–2018

    Google Scholar 

  • Bodai T, Drotos G, Herein M, Lunkeit F, Lurarini V (2020) The forced response of the El Niño-Southern oscillation-Indian monsoon teleconnection in ensembles of earth system models. J Clim 33(6):2163–2182

    Google Scholar 

  • Bollasina M, Ming Y (2013) The general circulation model precipitation bias over the southwestern equatorial Indian Ocean and its implications for simulating the South Asian monsoon. Clim Dyn 40:823–838

    Google Scholar 

  • Boschat G, Terray P, Masson S (2011) Interannual relationships between Indian summer monsoon and Indo-Pacific coupled modes of variability during recent decades. Clim Dyn 37:1019–1043. https://doi.org/10.1007/s00382-010-0887-y

    Article  Google Scholar 

  • Boschat G, Terray P, Masson S (2012) Robustness of SST teleconnections and precursory patterns associated with the Indian summer monsoon. Clim Dyn 38:2143–2165. https://doi.org/10.1007/s00382-011-1100-7

    Article  Google Scholar 

  • Cai W, Cowan T (2013) Why is the amplitude of the Indian Ocean dipole overly large in CMIP3 and CMIP5 climate models? Geophys Res Lett 40:1200–1205. https://doi.org/10.1002/grl.50208

    Article  Google Scholar 

  • Cai W, Wu L, Lengaigne M, Li T, McGregor S, Kug J-S, Yu J-Y, Stuecker MF, Santoso A, Li X, Ham Y-G, Chikamoto Y, Ng B, McPhaden MJ, Du Y, Dommenget D, Jia F, Kajtar JB, Keenlyside N, Lin X, Luo JJ, Martin-Rey M, Ruprich-Robert Y, Wang G, Xie SP, Yang Y, Kang SM, Choi J-Y, Gan B, Kim G-I, Kim C-E, Kim S, Kim J-H, Chang P (2019) Pantropical climate interactions. Science 363:6430. https://doi.org/10.1126/science.aav4236

    Article  Google Scholar 

  • Cash BA, Barimalala R, Kinter JL, Altshuler EL, Fennessy MJ, Manganello JV et al (2017) Sampling variability and the changing ENSO-monsoon relationship. Clim Dyn 48:4071–4079. https://doi.org/10.1007/s00382-016-3320-3

    Article  Google Scholar 

  • Chen T-C (2003) Maintenance of summer monsoon circulations: a planetary-scale perspective. J Clim 16:2022–2037

    Google Scholar 

  • Chen W, Dong B, Lu R (2010) Impact of the Atlantic Ocean on the multidecadal fluctuation of El Nio-Southern Oscillation-South Asian monsoon relationship in a coupled general circulation model. J Geophys Res 115:D17109. https://doi.org/10.1029/2009JD013596

    Article  Google Scholar 

  • Chen M-C, Li T, Shen X-Y et al (2016) Relative roles of dynamic and thermodynamic processes in causing evolution asymmetry between El Niño and La Niña. J Clim 29:2201–2220. https://doi.org/10.1175/JCLI-D-15-0547.1

    Article  Google Scholar 

  • Cherchi A, Navarra A (2013) Influence of ENSO and of the Indian Ocean dipole on the Indian summer monsoon variability. Clim Dyn 41:81–103. https://doi.org/10.1007/s00382-012-1602-y

    Article  Google Scholar 

  • Cherchi A, Gualdi S, Behera S, Luo JJ, Masson S, Yamagata T, Navarra A (2007) The influence of tropical Indian Ocean SST on the Indian summer monsoon. J Clim 20:3083–3105. https://doi.org/10.1175/JCLI4161.1

    Article  Google Scholar 

  • Chowdary JS, Parekh A, Kakatkar R, Gnanaseelan C, Sriniva G, Singh P, Roxy M (2016) Tropical Indian Ocean response to the decay phase of El Nino in a coupled model and associated changes in south and east-Asian summer monsoon circulation and rainfall. Clim Dyn 47:831–844. https://doi.org/10.1007/s00382-015-2874-9

    Article  Google Scholar 

  • Chowdary JS, Harsha HS, Gnanaseelan C, Srinivas G, Parekh A, Pillai P, Naidu CV (2017) Indian summer monsoon rainfall variability in response to differences in the decay phase of El Niño. Clim Dyn 48:2707–2727

    Google Scholar 

  • Clarke AJ (2008) An introduction to the dynamics of El Niño and the Southern oscillation. Academic Press, London, p 308

    Google Scholar 

  • Cleveland WS, Devlin SJ (1988) Locally weighted regression: an approach to regression analysis by local fitting. J Am Stat Assoc 83:596–610

    Google Scholar 

  • Collins M et al (2010) The impact of global warming on the tropical Pacific Ocean and El Niño. Nat Geosci 3:391–397. https://doi.org/10.1038/ngeo868

    Article  Google Scholar 

  • Cretat J, Terray P, Masson S, Sooraj KP, Roxy MK (2017) Indian Ocean and Indian Summer Monsoon: relationships without ENSO in ocean-atmosphere coupled simulations. Clim Dyn 49:1429–1448. https://doi.org/10.1007/s00382-016-3387-x

    Article  Google Scholar 

  • Cretat J, Terray P, Masson S, Sooraj KP (2018) Intrinsic precursors and timescale of the tropical Indian Ocean Dipole: insights from partially decoupled experiment. Clim Dyn 51:1311–1352. https://doi.org/10.1007/s00382-017-3956-7

    Article  Google Scholar 

  • Doi T, Behera SK, Yamagata T (2016) Improved seasonal prediction using the SINTEX-F2 coupled model. JAMES 8:1847–1867. https://doi.org/10.1002/2016MS000744

    Article  Google Scholar 

  • Dommenget D, Semenov V, Latif M (2006) Impacts of the tropical Indian and Atlantic Oceans on ENSO. Geophys Res Lett 33:L11701. https://doi.org/10.1029/2006GL025871

    Article  Google Scholar 

  • Drbohlav HKL, Gualdi S, Navarra A (2007) A diagnostic study of the Indian Ocean dipole mode in El Niño and non-El Niño years. J Clim 20:2961–2977. https://doi.org/10.1175/JCLI4153.1

    Article  Google Scholar 

  • Ebisuzaki W (1997) A method to estimate the statistical significance of a correlation when the data are serially correlated. J Clim 10:2147–2153

    Google Scholar 

  • Feba F, Ashok K, Ravichandran M (2019) Role of changed Indo-Pacific atmospheric circulation in the recent disconnect between the Indian summer monsoon and ENSO. Clim Dyn 52:1461–1470

    Google Scholar 

  • Fischer A, Terray P, Guilyardi E, Delecluse P (2005) Two independent triggers for the Indian Ocean dipole/zonal mode in a coupled GCM. J Clim 18:3428–3449

    Google Scholar 

  • Gadgil S, Vinayachandran PN, Francis PA, Gadgil S (2004) Extremes of the Indian summer monsoon rainfall, ENSO and equatorial Indian Ocean oscillation. Geophys Res Lett 31:L12213. https://doi.org/10.1029/2004GL019733

    Article  Google Scholar 

  • Gadgil S, Rajeevan M, Nanjundiah R (2005) Monsoon prediction—why yet another failure? Curr Sci 84:1713–1719

    Google Scholar 

  • Gadgil S, Rajeevan M, Francis PA (2007) Monsoon variability: links to major oscillations over the equatorial Pacific and Indian oceans. Curr Sci 93:182–194

    Google Scholar 

  • Gershunov A, Schneider N, Barnett TP (2001) Low-frequency modulation of the ENSO-Indian monsoon rainfall relationship: signal or noise? J Clim 14:2486–2492. https://doi.org/10.1175/1520-0442(2001)014,2486:LFMOTE.2.0.CO;2

    Article  Google Scholar 

  • Gill AE (1980) Some simple solutions for heat-induced tropical circulation. Q J R Meteorol Soc 106:447–462

    Google Scholar 

  • Gu DJ, Li T, Ji ZP et al (2010) On the phase relations between the western North pacific, Indian, and Australian monsoons. J Clim 23:5572–5589. https://doi.org/10.1175/2010JCLI2761.1

    Article  Google Scholar 

  • Gualdi S, Guilyardi E, Navarra A, Masina S, Delecluse P (2003) The interannual variability in the tropical Indian Ocean as simulated by a CGCM. Clim Dyn 20:567–582. https://doi.org/10.1007/s00382-002-0295-z

    Article  Google Scholar 

  • Ham YG, Kug JS (2014) ENSO phase-locking to the boreal winter in CMIP3 and CMIP5 models. Clim Dyn 43:305–318

    Google Scholar 

  • Huang B, Thorne Peter W et al (2017) Extended reconstructed sea surface temperature version 5 (ERSSTv5), upgrades, validations, and intercomparisons. J Clim 30:8179–8205. https://doi.org/10.1175/JCLI-D-16-0836.1

    Article  Google Scholar 

  • Huffman GJ, Adler RF, Morrissey MM, Bolvin DT, Curtis S, Joyce R, McGavock B, Susskind J (2001) Global precipitation at one-degree daily resolution from multisatellite observations. J Hydrometeor 2:36–50

    Google Scholar 

  • Izumo T, Vialard J, Lengaigne M et al (2010) Influence of the state of the Indian Ocean dipole on the following years El Niño. Nat Geosci 3:168–172

    Google Scholar 

  • Jansen MF, Dommenget D, Keenlyside N (2009) Tropical atmosphere-ocean interactions in a conceptual framework. J Clim 22(3):550–567

    Google Scholar 

  • Jourdain NC et al (2013) The Indo-Australian monsoon and its relationship to ENSO and IOD in reanalysis data and the CMIP3/CMIP5 simulations. Clim Dyn 41:3073–3102

    Google Scholar 

  • Jourdain NC, Lengaigne M, Vialard J, Izumo T, Gupta AS (2016) Further insights on the influence of the Indian Ocean dipole on the following year’s ENSO from observations and CMIP5 models. J Clim 29:637–658

    Google Scholar 

  • Kajtar JB, Santoso A, England MH, Cai W (2017) Tropical climate variability: interactions across the Pacific, Indian, and Atlantic Oceans. Clim Dyn 48:2173–2190. https://doi.org/10.1007/s00382-016-3199-z

    Article  Google Scholar 

  • Keshavamurthy RN (1982) Response of the atmosphere to sea surface temperature anomalies over the equatorial Pacific and teleconnections of the Southern Oscillation. J Atmos Sci 39:1241–1259

    Google Scholar 

  • Kinter JL III, Miyakoda K, Yang S (2002) Recent changes in the connection from the Asian monsoon to ENSO. J Clim 15:1203–1215. https://doi.org/10.1175/1520-0442(2002)015%3c1203:RCITCF%3e2.0.CO;2

    Article  Google Scholar 

  • Kirtman B, Shukla J (2000) Influence of the Indian summer monsoon on ENSO. Q J R Meteor Soc 126:213–239. https://doi.org/10.1002/qj.49712656211

    Article  Google Scholar 

  • Klein SA, Soden BJ, Lau NC (1999) Remote sea surface temperature variations during ENSO: evidence for a tropical atmospheric bridge. J Clim 12:917–932. https://doi.org/10.1175/1520-0442(1999)012%3c0917:RSSTVD%3e2.0.CO;2

    Article  Google Scholar 

  • Kosaka Y, Xie S-P, Lau NC, Vecchi GA (2013) Origin of seasonal predictability for summer climate over the Northwestern Pacific. PNAS 110:7574–7579

    Google Scholar 

  • Krishna RPM, Rao SA, Srivastava A et al (2019) Impact of convective parameterization on the seasonal prediction skill of Indian summer monsoon. Clim Dyn 53:6227–6243. https://doi.org/10.1007/s00382-019-04921-y

    Article  Google Scholar 

  • Krishna Kumar K, Rajagopalan B, Cane MA (1999) On the weakening relationship between the Indian monsoon and ENSO. Science 284:2156–2159

    Google Scholar 

  • Krishna Kumar K, Rajagopolan B, Hoerling M, Bates G, Cane M (2006) Unraveling the mystery of Indian monsoon failure during El Nino. Science 314:115–119

    Google Scholar 

  • Krishnan R, Mujumdar M, Vaidya V, Ramesh KV, Satyan V (2003) The abnormal Indian summer monsoon of 2000. J Clim 16:1177–1194

    Google Scholar 

  • Krishnaswamy J, Vaidyanathan S, Rajagopalan B et al (2015) Non-stationary and non-linear influence of ENSO and Indian Ocean Dipole on the variability of Indian monsoon rainfall and extreme rain events. Clim Dyn 45:175–184. https://doi.org/10.1007/s00382-014-2288-0

    Article  Google Scholar 

  • Kucharski F, Bracco A, Yoo J, Molteni F (2007) Low-frequency variability of the Indian monsoon-ENSO relationship and the tropical Atlantic: the weakening of the 1980s and 1990s. J Clim 20:4255–4266

    Google Scholar 

  • Kucharski F, Bracco A, Yoo J, Molteni F (2008) Atlantic forced component of the Indian monsoon interannual variability. Geophys Res Lett 35:L04706

    Google Scholar 

  • Kug J-S, Ham YG (2012) Indian Ocean feedback to the ENSO transition in a multi-model ensemble. J Clim 25:6942–6957. https://doi.org/10.1175/JCLI-D-12-00078.1

    Article  Google Scholar 

  • Kug J-S, Kang I-S (2006) Interactive feedback between ENSO and the Indian Ocean. J Clim 19:1784–1801

    Google Scholar 

  • Lau NC, Nath MJ (2000) Impact of ENSO on the variability of the Asian-Australian monsoons as simulated in GCM experiments. J Clim 13(24):4287–4309

    Google Scholar 

  • Lau NC, Nath MJ (2003) Atmosphere-ocean variations in the Indo-Pacific sector during ENSO episode. J Clim 16:3–20. https://doi.org/10.1175/1520-0442(2003)016%3c0003:AOVITI%3e2.0.CO;2

    Article  Google Scholar 

  • Lau NC, Nath MJ (2012) A model study of the air-sea interaction associated with the climatological aspects and interannual variability of the South Asian summer monsoon development. J Clim 25:839–857. https://doi.org/10.1175/JCLI-D-11-00035.1

    Article  Google Scholar 

  • Lau NC, Wang B (2006) Interactions between the Asian monsoon and the El Niño/Southern oscillation. In: Wang B (ed) The Asian monsoon. Springer/Praxis Publishing, New York, pp 478–512

  • Levine RC, Turner AG, Marathayil D, Martin GM (2013) The role of northern Arabian Sea surface temperature biases in CMIP5 model simulations and future projections of Indian summer monsoon rainfall. Clim Dyn 4:155–172

    Google Scholar 

  • Li T, Hsu P-C (2017) Monsoon dynamics and its interactions with ocean. Fund Trop Clim Dyn 2017:236. https://doi.org/10.1007/978-3-319-59597-9 ((Springer International Publishing, Cham))

    Article  Google Scholar 

  • Li X, Ting M (2015) Recent and future changes in the Asian monsoon-ENSO relationship: natural or forced? Geophys Res Lett 42:3502–3512. https://doi.org/10.1002/2015GL063557

    Article  Google Scholar 

  • Li G, Xie S-P (2012) Origins of tropical-wide SST biases in CMIP multi-model ensembles. Geophys Res Lett 39:L22703. https://doi.org/10.1029/2012GL053777

    Article  Google Scholar 

  • Li G, Xie S-P (2014) Tropical biases in CMIP5 multimodel ensemble: the excessive equatorial Pacific cold tongue and double ITCZ problems. J Clim 27:1765–1780

    Google Scholar 

  • Li T, Wang B, Chang C-P et al (2003) A theory for the Indian Ocean dipole-zonal mode. J Atmos Sci 60:2119–2135. https://doi.org/10.1175/1520-0469(2003)060%3c2119:ATFTIO%3e2.0.CO;2

    Article  Google Scholar 

  • Li G, Xie S-P, Du Y (2015) Monsoon-induced biases of climate models in the tropical Indian Ocean. J Clim 28:3058–3072. https://doi.org/10.1175/JCLI-D-14-00740.1

    Article  Google Scholar 

  • Li G, Xie S-P, Du Y (2016) A robust but spurious pattern of climate change in model projections over the tropical Indian Ocean. J Clim 29(5589):5608

    Google Scholar 

  • Li G, Xie S-P, He C et al (2017) Western Pacific emergent constraint lowers projected increase in Indian summer monsoon rainfall. Nature Clim Change 7:708–712. https://doi.org/10.1038/nclimate3387

    Article  Google Scholar 

  • Li T, Wang B, Wu B et al (2017) Theories on formation of an anomalous anticyclone in western North Pacific during El Niño: a review. J Meteor Res 31(6):987–1006

    Google Scholar 

  • Li Z, Lin X, Cai W (2017) Realism of modelled Indian summer monsoon correlation with the tropical Indo-Pacific affects projected monsoon changes. Sci Rep 7(1):1–7. https://doi.org/10.1038/s41598-017-05225-z

    Article  Google Scholar 

  • Li G, Jian Y, Yang S et al (2019) Effect of excessive equatorial Pacific cold tongue bias on the El Niño-Northwest Pacific summer monsoon relationship in CMIP5 multi-model ensemble. Clim Dyn 52:6195–6212

    Google Scholar 

  • Loschnigg J, Meehl GA, Webster PJ, Arblaster JM, Compo GP (2003) The Asian monsoon, the tropospheric biennial oscillation and the Indian Ocean dipole in the NCAR CSM. J Clim 16:2138–2158. https://doi.org/10.1175/1520-0442(2003)016%3c1617:TAMTTB%3e2.0.CO;2

    Article  Google Scholar 

  • Luo JJ, Masson S, Behera SK, Shingu S, Yamagata T (2005) Seasonal climate predictability in a coupled OAGCM using a different approach for ensemble forecasts. J Clim 18:4474–4497. https://doi.org/10.1175/JCLI3526.1

    Article  Google Scholar 

  • Luo JJ, Zhang R, Behera SK, Masumoto Y, Jin F-F, Lukas R, Yamagata T (2010) Interaction between El Niño and extreme Indian Ocean dipole. J Clim 23:726–742

    Google Scholar 

  • Madec G (2008) NEMO ocean engine. In: Note du Pole de modelisation, Institut Pierre-Simon Laplace (IPSL) No 27. ISSN No 1288-1619

  • Masson S, Terray P, Madec G, Luo JJ, Yamagata T, Takahashi K (2012) Impact of intra-daily SST variability on ENSO characteristics in a coupled model. Clim Dyn 39:681–707

    Google Scholar 

  • Meehl GA (1997) The south Asian monsoon and the tropospheric biennial oscillation (TBO). J Clim 10:1921–1943

    Google Scholar 

  • Meehl GA, Arblaster JM (2002) The tropospheric biennial oscillation and the Asian-Australian monsoon rainfall. J Clim 15:722–744

    Google Scholar 

  • Meehl GA, Arblaster JM, Loschnigg J (2003) Coupled ocean-atmosphere dynamical processes in the tropical Indian and Pacific oceans and the TBO. J Clim 16:2138–2158. https://doi.org/10.1175/2767.1

    Article  Google Scholar 

  • Mooley DA, Parthasarathy B (1983) Variability of the Indian summer monsoon and tropical circulation features. Mon Wea Rev 111:967–978

    Google Scholar 

  • Morrison DF (1990) Multivariate statistical methods, 3rd edn. McGraw-Hill, New York, p 495

    Google Scholar 

  • Ohba M, Ueda H (2007) An impact of SST anomalies in the Indian Ocean in acceleration of the El Nino to La Nina transition. J Meteor Soc Jpn 85:335–348

    Google Scholar 

  • Ohba M, Watanbe M (2012) Role of the Indo-Pacific Interbasin coupling in predicting asymmetric ENSO transition and duration. J Clim 25:3321–3334

    Google Scholar 

  • Okumura YM, Ohba M, Deser C (2011) A proposed mechanism for asymmetric duration of El Nino and La Nina. J Clim 24:3822–3829

    Google Scholar 

  • Pai DS, Sridhar L, Badwaik MR, Rajeevan M (2015) Analysis of the daily rainfall events over India using a new long period (1901–2010) high resolution (0.25 × 0.25) gridded rainfall data set. Clim Dyn 45:755–776

    Google Scholar 

  • Park HS, Chiang JCH, Lintner BR, Zhang GJ (2010) The delayed effect of major El Niño events on Indian monsoon rainfall. J Clim 23:932–946

    Google Scholar 

  • Parthasarathy B, Munot AA, Kothawale DR (1994) All-India monthly and seasonal rainfall series: 1871–1993. Theor Appl Climatol 49:217–224

    Google Scholar 

  • Pillai PA, Annamalai H (2012) Moist dynamics of severe monsoons over South Asia: role of the tropical SST. J Atmos Sci 69(1):97–115

    Google Scholar 

  • Prodhomme C, Terray P, Masson S, Izumo T, Tozuka T, Yamagata T (2014) Impacts of Indian Ocean SST biases on the Indian Monsoon: as simulated in a global coupled model. Clim Dyn 42:271–290. https://doi.org/10.1007/s00382-013-1671-6

    Article  Google Scholar 

  • Prodhomme C, Terray P, Masson S, Boschat G, Izumo T (2015) Oceanic factors controlling the Indian Summer Monsoon Onset in a coupled model. Clim Dyn 44:977–1002. https://doi.org/10.1007/s00382-014-2200-y

    Article  Google Scholar 

  • Ramu DA, Chowdary JS, Ramakrishna SSVS, Kumar OSRUB (2018) Diversity in the representation of large-scale circulation associated with ENSO-Indian summer monsoon teleconnections in CMIP5 models. Theor Appl Climatol 132:465–478. https://doi.org/10.1007/s00704-017-2092-y

    Article  Google Scholar 

  • Rao KG, Goswami BN (1988) Interannual variations of sea surface temperature over the Arabian Sea and the Indian monsoon: a new perspective. Mon Weath Rev 116:558–568

    Google Scholar 

  • Rao SA et al (2019) Monsoon mission: a targeted activity to improve monsoon prediction across scales. BAMS 2019:2509–2532

    Google Scholar 

  • Rasmusson EM, Carpenter TH (1983) The relationship between eastern equatorial Pacific sea surface temperature and rainfall over India and Sri Lanka. Mon Wea Rev 111:517–528. https://doi.org/10.1175/1520-0493(1983)111%3c0517:TRBEEP%3e2.0.CO;2

    Article  Google Scholar 

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407. https://doi.org/10.1029/2002JD002670

    Article  Google Scholar 

  • Reynolds RW, Smith TM, Liu C, Chelton DB, Casey KS, Schlax MG (2007) Daily high-resolution-blended analyses for sea surface temperature. J Clim 20:5473–5496. https://doi.org/10.1175/2007JCLI1824.1

    Article  Google Scholar 

  • Rodwell MJ, Hoskins BJ (2001) Subtropical anticyclones and summer monsoons. J Clim 14:3192–3211

    Google Scholar 

  • Roeckner E, Baüml G, Bonaventura L, Brokopf R, Esch M, Girogetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM 5, Part I. In: MPI Report, vol 349. Max-Planck-Institut für Meteorologie, Hamburg, pp 137

  • Roxy MK, Rikita K, Terray P, Masson S (2014) The curious case of Indian Ocean Warming. J Clim 27:8501–8508

    Google Scholar 

  • Sabeerali CT, Ajayamohan RS, Rao SA (2019) Loss of predictive skill of indian summer monsoon rainfall in NCEP CFSv2 due to misrepresentation of Atlantic zonal mode. Clim Dyn 52:4599–4619. https://doi.org/10.1007/s00382-018-4390-1

    Article  Google Scholar 

  • Saha S et al (2014) The NCEP climate forecast system version 2. J Clim 27:2185–2208

    Google Scholar 

  • Saha SK, Pokhrel S, Salunke K, Dhakate A, Chaudhari HS, Rahaman H, Sujith K, Hazra A, Sikka DR (2016) Potential predictability of Indian summer monsoon rainfall in NCEP CFSv2. JAMES 8:96–120. https://doi.org/10.1002/2015MS000542

    Article  Google Scholar 

  • Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401(6751):360–363. https://doi.org/10.1038/43855

    Article  Google Scholar 

  • Santoso A, England MH, Cai W (2012) Impact of Indo-Pacific feedback interactions on ENSO dynamics diagnosed using ensemble climate simulations. J Clim 25:7743–7763

    Google Scholar 

  • Schott FA, Xie SP, McCreary JP (2009) Indian Ocean circulation and climate variability. Rev Geophys 47:RG1002. https://doi.org/10.1029/2007rg000245

    Article  Google Scholar 

  • Shukla RP, Huang B (2016) Interannual variability of the Indian summer monsoon associated with the air-sea feedback in the northern Indian Ocean. Clim Dyn 46:1977–1990

    Google Scholar 

  • Shukla J, Hagedorn R, Hoskins B, Kinter J, Marotzke J, Miller M, Palmer TN, Slingo J (2009) Strategies: revolution in climate prediction is both necessary and possible: a declaration at the world modelling summit for climate prediction. Bull Am Meteor Soc 90:175–178

    Google Scholar 

  • Sikka DR (1980) Some aspects of the large-scale fluctuations of summer monsoon rainfall over India in relations to fluctuations in the planetary and regional scale circulation parameters. J Earth Syst Sci 89:179–195. https://doi.org/10.1007/BF02913749

    Article  Google Scholar 

  • Spencer H, Sutton RT, Slingo JM, Roberts JM, Black E (2005) The Indian Ocean climate and dipole variability in the Hadley centre coupled GCMs. J Clim 18:2286–2307

    Google Scholar 

  • Sperber KR, Annamalai H, Kang I-S, Kitoh A, Moise A, Turner A, Wang B, Zhou T (2013) The Asian summer monsoon: an intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Clim Dyn 41:2711–2744

    Google Scholar 

  • Srivastava K, Srijith OP, Kshirsagar SR, Srivastava K (2015) Has modulation of Indian summer monsoon rainfall by sea surface temperature of the equatorial Pacific Ocean, weakened in recent years? Clim Dyn 45:2237–2254

    Google Scholar 

  • Stuecker MF, Timmerman A, Jin FF, Chikamoto Y, Zhang W, Wittenberg AT, Widiasih E, Zhao S (2017) Revisiting ENSO/Indian Ocean dipole phase relationships. Geophys Res Lett 44:2481–2492. https://doi.org/10.1002/2016GL072308

    Article  Google Scholar 

  • Swapna P et al (2015) The IITM earth system model. Bull Am Meteor Soc 96:1351–1367

    Google Scholar 

  • Tao W, Huang G, Hu K et al (2016) A study of biases in simulation of the Indian Ocean basin mode and its capacitor effect in CMIP3/CMIP5 models. Clim Dyn 46:205–226. https://doi.org/10.1007/s00382-015-2579-0

    Article  Google Scholar 

  • Taschetto AS, Gupta AS, Jourdain NC, Santoso A, Ummenhofer CC, England MH (2014) Cold tongue and warm pool ENSO events in CMIP5: mean state and future projections. J Clim 27:2861–2885

    Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. BAMS 93:485–498

    Google Scholar 

  • Terao T, Kubota T (2005) East-west SST contrast over the tropical oceans and the post El Niño western North Pacific summer monsoon. Geophys Res Lett 32:L15706. https://doi.org/10.1029/2005GL023010

    Article  Google Scholar 

  • Terray P (1995) Space/Time structure of monsoons interannual variability. J Clim 8:2595–2619

    Google Scholar 

  • Terray P, Delecluse P, Labattu S, Terray L (2003) Sea surface temperature associations with the late Indian summer monsoon. Clim Dyn 21:593–618. https://doi.org/10.1007/s00382-003-0354-0

    Article  Google Scholar 

  • Terray P, Guilyardi E, Fischer AS, Delecluse P (2005) Dynamics of the Indian monsoon and ENSO relationships in the SINTEX global coupled model. Clim Dyn 24:145–168. https://doi.org/10.1007/s00382-004-0479-9

    Article  Google Scholar 

  • Terray P, Dominiak S, Delecluse P (2005) Role of the southern Indian Ocean in the transitions of the monsoon-ENSO system during recent decades. Clim Dyn 24:169–195. https://doi.org/10.1007/s00382-004-0480-3

    Article  Google Scholar 

  • Terray P, Chauvin F, Douville H (2007) Impact of southeast Indian Ocean sea surface temperature anomalies on monsoon-ENSO dipole variability in a coupled ocean-atmosphere model. Clim Dyn 28:553–580. https://doi.org/10.1007/s00382-006-0192-y

    Article  Google Scholar 

  • Terray P, Kamala K, Masson S, Madec G, Sahai AK, Luo JJ, Yamagata T (2012) The role of the intra-daily SST variability in the Indian monsoon variability and monsoon-ENSO-IOD relationships in a global coupled model. Clim Dyn 39:729–754. https://doi.org/10.1007/s00382-011-1240-9

    Article  Google Scholar 

  • Terray P, Masson S, Prodhomme C, Roxy MK, Sooraj KP (2016) Impacts of Indian and Atlantic oceans on ENSO in a comprehensive modeling framework. Clim Dyn 46:2507–2533. https://doi.org/10.1007/s00382-015-2715-x

    Article  Google Scholar 

  • Terray P, Sooraj KP, Masson S, Krishna RPM, Samson G, Prajeesh AG (2018) Towards a realistic simulation of boreal summer tropical rainfall climatology in state-of-the art coupled models: role of the background snow-free albedo. Clim Dyn 50:3413–3439

    Google Scholar 

  • Torrence C, Webster PJ (1999) Interdecadal changes in the ENSO-monsoon system. J Clim 12:2679–2690

    Google Scholar 

  • Tourre Y, White WB (1995) ENSO Signals in global upper-ocean temperature. J Phys Ocean 25:1317–1332

    Google Scholar 

  • Turner AG, Annamalai H (2012) Climate change and the south Asian summer monsoon. Nat Clim Change 2:1–9

    Google Scholar 

  • Ummenhofer CC, Sen Gupta A, Li Y, Taschetto AS, England MH (2011) Multi-decadal modulation of the El Niño-Indian monsoon relationship by Indian Ocean variability. Env Res Lett 6(034):006

    Google Scholar 

  • Valcke S (2006) OASIS3 user guide (prism_2–5). In: CERFACS technical report TR/CMGC/06/73, PRISM report no. 3, Toulouse, pp 64

  • Walker GT (1924) Correlation in seasonal variations of weather - A further study of world weather. Mon Wea Rev 53:252–254. https://doi.org/10.1175/1520-0493(1925)53%3c252:CISVOW%3e2.0.CO;2

    Article  Google Scholar 

  • Wang B (2006) The Asian monsoon. Springer/Praxis Publishing, New York, p 787

    Google Scholar 

  • Wang C (2019) Three-ocean interactions and climate variability: a review and perspective. Clim Dyn 53:5119–5136

    Google Scholar 

  • Wang B, Wu RG, Fu XH (2000) Pacific-East Asian teleconnection: how does ENSO affect East Asian climate? J Clim 13:1517–1536. https://doi.org/10.1175/1520-0442(2000)013%3c1517:PEATHD%3e2.0.CO;2

    Article  Google Scholar 

  • Wang B, Ding QH, Fu XH et al (2005) Fundamental challenge in simulation and prediction of summer monsoon rainfall. Geophys Res Lett 32:L15711. https://doi.org/10.1029/2005GL02273412

    Article  Google Scholar 

  • Wang B, Xiang BQ, Lee J-Y (2013) Subtropical high predictability establishes a promising way for monsoon and tropical storm predictions. PNAS USA 110:2718–2722. https://doi.org/10.1073/pnas.1214626110

    Article  Google Scholar 

  • Wang C, Zhang L, Lee SK et al (2014) A global perspective on CMIP5 climate model biases. Nat Clim Chang 4:201–205

    Google Scholar 

  • Wang H, Murtugudde R, Kumar A (2016) Evolution of Indian Ocean dipole and its forcing mechanisms in the absence of ENSO. Clim Dyn 47:2481–2500. https://doi.org/10.1007/s00382-016-2977-y

    Article  Google Scholar 

  • Wang H, Kumar A, Murtugudde R, Narapusetty B, Seip K (2019) Covariations between the Indian Ocean dipole and ENSO: a modeling study. Clim Dyn 53:5743–5761. https://doi.org/10.1007/s00382-019-04895-x

    Article  Google Scholar 

  • Watanabe M, Jin F-F (2002) Role of Indian Ocean warming in the development of Philippine Sea anticyclone during ENSO. Geophys Res Lett 29:1478. https://doi.org/10.1029/2001GL014318

    Article  Google Scholar 

  • Webster PJ, Hoyos CD (2010) Beyond the spring barrier? Nat Geosci 3:152–153. https://doi.org/10.1038/ngeo800

    Article  Google Scholar 

  • Webster PJ, Yang S (1992) Monsoon and ENSO: selectively interactive systems. Q J R Meteor Soc 118:877–926

    Google Scholar 

  • Webster PJ, Magana V, Palmer TN, Shukla J, Tomas RA, Yanai M, Yasunari T (1998) Monsoons: processes, predictability and the prospects for prediction. J Geophys Res 103:14451–14510. https://doi.org/10.1029/97JC02719

    Article  Google Scholar 

  • Webster PJ, Moore AM, Loschnigg JP, Leben RR (1999) Coupled ocean-atmosphere dynamics in the Indian Ocean during 1997–1998. Nature 401:356–360. https://doi.org/10.1038/43848

    Article  Google Scholar 

  • Wieners CE, Dijkstra HA, de Ruijter WPM (2017a) The influence of the Indian Ocean on ENSO stability and flavor. J Clim 30:2601–2620. https://doi.org/10.1175/JCLI-D-16-0516.1

    Article  Google Scholar 

  • Wieners CE, Dijkstra HA, de Ruijter WPM (2017b) The influence of atmospheric convection on the interaction between the Indian Ocean and ENSO. J Clim 30:10155–10178. https://doi.org/10.1175/JCLI-D-17-0081.1

    Article  Google Scholar 

  • Wu R, Kirtman BP (2004a) Impacts of the Indian Ocean on the Indian summer monsoon-ENSO relationship. J Clim 17:3037–3054

    Google Scholar 

  • Wu R, Kirtman BP (2004b) Understanding the impacts of the Indian Ocean on ENSO variability in a coupled GCM. J Clim 17:4019–4031

    Google Scholar 

  • Wu R, Kirtman BP (2005) Roles of Indian and Pacific Ocean air-sea coupling in tropical atmospheric variability. Clim Dyn 25:155–170

    Google Scholar 

  • Wu R, Chen J, Chen W (2012) Different types of ENSO influences on the Indian summer monsoon variability. J Clim 25:903–920. https://doi.org/10.1175/JCLI-D-11-00039.1

    Article  Google Scholar 

  • Wu B, Zhou TJ, Li T (2017a) Atmospheric dynamic and thermodynamic processes driving the western North Pacific anomalous anticyclone during El Niño. Part I: maintenance mechanisms. J Clim 30:9621–9635. https://doi.org/10.1175/JCLID-16-0489.1

    Article  Google Scholar 

  • Wu B, Zhou TJ, Li T (2017b) Atmospheric dynamic and thermodynamic processes driving the western North Pacific anomalous anticyclone during El Niño. Part II: formation processes. J Clim 30:9637–9650. https://doi.org/10.1175/JCLI-D-16-0495.1

    Article  Google Scholar 

  • Xie SP, Hu K, Hafner J et al (2009) Indian Ocean capacitor effect on Indo-Western pacific climate during the summer following El Niño. J Clim 22:730–747. https://doi.org/10.1175/2008JCLI2544.1

    Article  Google Scholar 

  • Xie SP, Kosaka Y, Du Y et al (2016) Indo-western Pacific Ocean capacitor and coherent climate anomalies in post-ENSO summer: a review. Adv Atmos Sci 33:411–432. https://doi.org/10.1007/s00376-015-5192-6

    Article  Google Scholar 

  • Yang JL, Liu QY, Xie S-P et al (2007) Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys Res Lett 34:L02708. https://doi.org/10.1029/2006GL028571

    Article  Google Scholar 

  • Yang J, Liu Q, Liu Z (2010) Linking observations of the Asian monsoon to the Indian Ocean SST: possible roles of Indian Ocean basin mode and dipole mode. J Clim 23:5889–5902

    Google Scholar 

  • Yang Y, Xie SP, Wu L, Kosoka Y, Lau NC, Vecchi GA (2015) Seasonality and predictability of the Indian Ocean Dipole mode: ENSO forcing and internal variability. J Clim 28:8021–8036

    Google Scholar 

  • Yasunari T (1990) Impact of Indian monsoon on the coupled atmosphere/ocean system in the tropical Pacific. Meteor Atmos Phys 44:29–41

    Google Scholar 

  • Yun KS, Timmermann A (2018) Decadal monsoon-ENSO relationships reexamined. Geophys Res Lett 45:2014–2021. https://doi.org/10.1002/2017GL076912

    Article  Google Scholar 

  • Zhou Q, Duan W, Mu M, Feng R (2015) Influence of positive and negative Indian Ocean dipoles on ENSO via the Indonesian throughflow: results from sensitivity experiments. Adv Atmos Sci 32:783–793

    Google Scholar 

  • Zhu J, Shukla J (2013) The role of air-sea coupling in seasonal prediction of Asia-Pacific summer monsoon rainfall. J Clim 26:5689–5697. https://doi.org/10.1175/JCLI-D-13-00190.1

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the outstanding work undertaken by the many international modeling groups who provided their numerous model experiments for the Program for Climate Model Diagnosis and Intercomparison (PCMDI). For more details on model data or documentation for CMIP5, readers are referred to the PCMDI Web site (https://www-pcmdi.llnl.gov). Pascal Terray is funded by Institut de Recherche pour le Développement (IRD, France). KP Sooraj is funded by The Centre for Climate Change Research (CCCR) and the Indian Institute of Tropical Meteorology (IITM), which are fully funded by the Ministry of Earth Sciences, Government of India. The SINTEX-F2 simulations are performed using HPC resources in France from GENCI-IDRIS (Grant 0106895 over the last 5 years). The CFS simulation is performed using the HPC resources from IITM in India. We finally aknowledge the two anonymous reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Terray.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (EPS 9043 kb)

Supplementary file2 (DOC 54 kb)

Appendix

Appendix

The SST nudging is performed inside the SST equation of the ocean model. We suppressed the SST variability in a specific domain by applying a strong nudging of the SST toward a SST climatology computed from a control experiment or observations (see Table 1 and Sect. 2.3 for details). More precisely, this is done through a modification of the non-solar heat flux provided by the atmosphere to the ocean by adding a correction term that is proportional with the SST difference with the target climatology at each time step:

$${\text{Q}}_{{{\text{ns}}}} \;{ = }\;{\text{Q}}_{{{\text{ns}}}} \;{ + }\;{\text{dq/dt}}\times\left( {{\text{SST}} - {\text{SST}}_{{{\text{clim}}}} } \right)$$

Qns, the nonsolar heat flux received from atmosphere. dq/dt, − 2400 W/m2/K (corresponds to the heat flux needed to warm a 50 m thick ocean layer of 1 K during 1 day). SSTclim, the target SST daily climatology, after a linear interpolation at each time step of the day.

The very strong dq/dt constant used here implies that the SST variability is almost suppressed in the selected domain. A Gaussian smoothing is finally applied in a transition zone in both longitude and latitude at the limits of the SST restoring domains (see Table 1).

This approach is interesting because the ocean dynamics (e.g., also thermocline variations) will be consistent with the SST in the ocean model, which is not the case when the SST is changed in the coupling interface of the coupled model as it is commonly done in many past/recent studies.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terray, P., Sooraj, K.P., Masson, S. et al. Anatomy of the Indian Summer Monsoon and ENSO relationships in state-of-the-art CGCMs: role of the tropical Indian Ocean. Clim Dyn 56, 329–356 (2021). https://doi.org/10.1007/s00382-020-05484-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-020-05484-z

Keywords

Navigation