Skip to main content

Advertisement

Log in

Non-stationary and non-linear influence of ENSO and Indian Ocean Dipole on the variability of Indian monsoon rainfall and extreme rain events

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The El Nino Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) are widely recognized as major drivers of inter-annual variability of the Indian monsoon (IM) and extreme rainfall events (EREs). We assess the time-varying strength and non-linearity of these linkages using dynamic linear regression and Generalized Additive Models. Our results suggest that IOD has evolved independently of ENSO, with its influence on IM and EREs strengthening in recent decades when compared to ENSO, whose relationship with IM seems to be weakening and more uncertain. A unit change in IOD currently has a proportionately greater impact on IM. ENSO positively influences EREs only below a threshold of 100 mm day−1. Furthermore, there is a non-linear and positive relationship between IOD and IM totals and the frequency of EREs (>100 mm day−1). Improvements in modeling this complex system can enhance the forecasting accuracy of the IM and EREs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abram NJ, Gagan MK, Cole JE, Hantoro WS, Mudelsee M (2008) Recent intensification of tropical climate variability in the Indian Ocean. Nat Geosci 1:849–853. doi:10.1038/ngeo357

    Article  Google Scholar 

  • Ajaymohan RS, Rao SA (2008) Indian Ocean dipole modulates the number of extreme rainfall events over india in a warming environment. J Meteorol Soc Jpn Ser II 86:245–252

    Article  Google Scholar 

  • Ashfaq M, Shi Y, Tung W, Trapp RJ, Gao X, Pal JS, Diffenbaugh NS (2009) Suppression of south Asian summer monsoon precipitation in the 21st century. Geophys Res Lett 36:L01704. doi:10.1029/2008GL036500

    Google Scholar 

  • Ashok K, Saji NH (2007) On the impacts of ENSO and Indian Ocean dipole events on sub-regional Indian summer monsoon rainfall. Nat Hazards 42:273–285. doi:10.1007/s11069-006-9091-0

    Article  Google Scholar 

  • Ashok K, Guan Z, Yamagata T (2001) Impact of the Indian Ocean dipole on the relationship between the Indian monsoon rainfall and ENSO. Geophys Res Lett 28:4499–4502

    Article  Google Scholar 

  • Ashok K, Guan Z, Saji NH, Yamagata T (2004) Individual and combined influences of ENSO and the Indian Ocean dipole on the Indian summer monsoon. J Clim 17:3141–3155

    Article  Google Scholar 

  • Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res 112:C11007

    Article  Google Scholar 

  • Ashrit RG, Kumar KR, Kumar KK (2001) ENSO-monsoon relationships in a greenhouse warming scenario. Geophys Res Lett 28:1727–1730

    Article  Google Scholar 

  • Cai W, Cowan T, Sullivan A (2009) Recent unprecedented skewness towards positive Indian Ocean dipole occurrences and its impact on Australian rainfall. Geophys Res Lett 36:L11705

    Article  Google Scholar 

  • Calder C, Lavine M, Müller P, Clark JS (2003) Incorporating multiple sources of stochasticity into dynamic population models. Ecology 84(6):1395–1402

    Article  Google Scholar 

  • Cherchi A, Navarra A (2013) Influence of ENSO and of the Indian Ocean Dipole on the Indian summer monsoon variability. Clim Dyn 41:81–103. doi:10.1007/s00382-012-1602-y

    Article  Google Scholar 

  • Dawson R, Speight L, Hall J, Djordjevic S, Savic D, Leandro J (2008) Attribution of flood risk in urban areas. J Hydroinformatics 10:275–288

    Article  Google Scholar 

  • Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000) Climate extremes: observations, modeling, and impacts. Science 289:2068–2074. doi:10.1126/science.289.5487.2068

    Article  Google Scholar 

  • Gabet EJ, Burbank DW, Putkonen JK, Pratt-Sitaula BA, Ojha T (2004) Rainfall thresholds for landsliding in the Himalayas of Nepal. Geomorphology 63:131–143

    Article  Google Scholar 

  • Gadgil S, Kumar KR (2006) The Asian monsoon—agriculture and economy. Asian Monsoon. Springer, Berlin Heidelberg, pp 651–683

    Google Scholar 

  • Ghosh S, Das D, Kao S-C, Ganguly AR (2012) Lack of uniform trends but increasing spatial variability in observed Indian rainfall extremes. Nat Clim Change 2:86–91. doi:10.1038/nclimate1327

    Article  Google Scholar 

  • Goswami BN, Venugopal V, Sengupta D, Madhusoodanan MS, Xavier PK (2006) Increasing trend of extreme rain events over India in a warming environment. Science 314:1442–1445

    Article  Google Scholar 

  • Groisman P, Karl T, Easterling D, Knight R, Jamason P, Hennessy K, Suppiah R, Page C, Wibig J, Fortuniak K, Razuvaev V, Douglas A, Førland E, Zhai P-M (1999) Changes in the probability of heavy precipitation: important indicators of climatic change. Clim Change 42:243–283. doi:10.1023/A:1005432803188

    Article  Google Scholar 

  • Guhathakurta P, Rajeevan M (2008) Trends in the rainfall pattern over India. Int J Climatol 28:1453–1469

    Article  Google Scholar 

  • Guhathakurta P, Sreejith O, Menon PA (2011) Impact of climate change on extreme rainfall events and flood risk in India. J Earth Syst Sci 120:359–373. doi:10.1007/s12040-011-0082-5

    Article  Google Scholar 

  • Guisan A, Edwards TC Jr, Hastie T (2002) Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecol Model 157:89–100

    Article  Google Scholar 

  • Han W, Meehl GA, Rajagopalan B, Fasullo JT, Hu A, Lin J, Large WG, Wang J, Quan X-W, Trenary LL, Wallcraft A, Shinoda T, Yeager S (2010) Patterns of Indian Ocean sea-level change in a warming climate. Nat Geosci 3:546–550. doi:10.1038/ngeo901

    Article  Google Scholar 

  • Harrison J, West M (1997) Bayesian forecasting and dynamic models. Springer Verlag, New York

    Google Scholar 

  • Harrisons PJ, Stevens CF (1976) Bayesian forecasting (with discussion). J Roy Stat Soc Ser B 38:205–247

    Google Scholar 

  • Hastie T, Tibshirani R (1986) Generalized additive models. Stat Sci 1:297–310. doi:10.1214/ss/1177013604

    Article  Google Scholar 

  • Hastie T, Tibshirani R (1990) Generalized additive models. Chapman & Hall/CRC, Florida

    Google Scholar 

  • Hennessy KJ, Gregory JM, Mitchell JFB (1997) Changes in daily precipitation under enhanced greenhouse conditions. Clim Dyn 13:667–680. doi:10.1007/s003820050189

  • Hoerling MP, Kumar A, Zhong M (1997) El Niño, La Niña, and the nonlinearity of their teleconnections. J Clim 10:1769–1786. doi:10.1175/1520-0442(1997)010<1769:ENOLNA>2.0.CO;2

  • Ihara C, Kushnir Y, Cane MA (2008) Warming trend of the indian ocean SST and Indian Ocean dipole from 1880 to 2004. J Clim 21:2035–2046

    Article  Google Scholar 

  • Izumo T, Vialard J, Lengaigne M, de Boyer Montegut C, Behera SK, Luo J–J, Cravatte S, Masson S, Yamagata T (2010) Influence of the state of the Indian Ocean dipole on the following year/’s El Nino. Nat Geosci 3:168–172. doi:10.1038/ngeo760

    Article  Google Scholar 

  • Kaplan A, Cane MA, Kushnir Y, Clement AC, Blumenthal MB, Rajagopalan B (1998) Analyses of global sea surface temperature 1856–1991. J Geophys Res Oceans 103:18567–18589. doi:10.1029/97JC01736

    Article  Google Scholar 

  • Krishnan R, Sabin TP, Ayantika DC, Kitoh A, Sugi M, Murakami H, Turner AG, Slingo JM, Rajendran K (2013) Will the South Asian monsoon overturning circulation stabilize any further? Clim Dyn 40:187–211. doi:10.1007/s00382-012-1317-0

    Article  Google Scholar 

  • Krishnaswamy J, Lavine M, Richter DD, Korfmacher K (2000) Dynamic modeling of long-term sedimentation in the Yadkin River basin. Adv Water Resour 23:881–892. doi:10.1016/S0309-1708(00)00013-0

    Article  Google Scholar 

  • Krishnaswamy J, Halpin PN, Richter DD (2001) Dynamics of sediment discharge in relation to land-use and hydro-climatology in a humid tropical watershed in Costa Rica. J Hydrol 253:91–109. doi:10.1016/S0022-1694(01)00474-7

    Article  Google Scholar 

  • Krishnaswamy J, John R, Joseph S (2014) Consistent response of vegetation dynamics to recent climate change in tropical mountain regions. Glob Change Biol 20:203–215. doi:10.1111/gcb.12362

    Article  Google Scholar 

  • Kumar KK, Rajagopalan B, Cane MA (1999) On the weakening relationship between the Indian monsoon and ENSO. Science 284:2156–2159

    Article  Google Scholar 

  • Kumar KK, Rajagopalan B, Hoerling M, Bates G, Cane M (2006) Unraveling the mystery of Indian monsoon failure during El Niño. Science 314:115–119

    Article  Google Scholar 

  • Kumar KK, Kamala K, Rajagopalan B, Hoerling M, Eischeid J, Patwardhan SK, Srinivasan G, Goswami BN, Nemani R (2011) The once and future pulse of Indian monsoonal climate. Clim Dyn 36:2159–2170. doi:10.1007/s00382-010-0974-0

    Article  Google Scholar 

  • Kundzewicz ZW, Mata LJ, Arnell NW, Döll P, Jimenez B, Miller K, Oki T, Şen Z, Shiklomanov I (2008) The implications of projected climate change for freshwater resources and their management. Hydrol Sci J 53:3–10. doi:10.1623/hysj.53.1.3

    Article  Google Scholar 

  • Lehmann A, Overton JM, Austin MP (2002) Regression models for spatial prediction: their role for biodiversity and conservation. Biodivers Conserv 11:2085–2092. doi:10.1023/A:1021354914494

    Article  Google Scholar 

  • Luo J-J, Zhang R, Behera SK, Masumoto Y, Jin F-F, Lukas R, Yamagata T (2010) Interaction between El Niño and extreme Indian Ocean dipole. J Clim 23:726–742. doi:10.1175/2009JCLI3104.1

    Article  Google Scholar 

  • Maity R, Nagesh Kumar D (2006) Bayesian dynamic modeling for monthly Indian summer monsoon rainfall using El Niño–Southern Oscillation (ENSO) and Equatorial Indian Ocean Oscillation (EQUINOO). J Geophys Res Atmos 111:D07104. doi:10.1029/2005JD006539

    Article  Google Scholar 

  • Meehl GA, Karl T, Easterling DR, Changnon S, Pielke R, Changnon D, Evans J, Groisman PY, Knutson TR, Kunkel KE, Mearns LO, Parmesan C, Pulwarty R, Root T, Sylves RT, Whetton P, Zwiers F (2000) An introduction to trends in extreme weather and climate events: observations, socioeconomic impacts, terrestrial ecological impacts, and model projections. Bull Am Meteorol Soc 81:413–416. doi:10.1175/1520-0477(2000)081<0413:AITTIE>2.3.CO;2

    Article  Google Scholar 

  • Parthasarathy B, Munot AA, Kothawale DR (1994) All-India monthly and seasonal rainfall series: 1871–1993. Theor Appl Climatol 49:217–224. doi:10.1007/BF00867461

    Article  Google Scholar 

  • Pearce JL, Beringer J, Nicholls N, Hyndman RJ, Tapper NJ (2011) Quantifying the influence of local meteorology on air quality using generalized additive models. Atmos Environ 45:1328–1336. doi:10.1016/j.atmosenv.2010.11.051

    Article  Google Scholar 

  • Petris G, Petrone S, Campagnoli P (2009) Dynamic linear models. Dyn. Linear Models R. Springer: New York, pp 31–84

  • Pielke RA, Downton MW (2000) Precipitation and damaging floods: trends in the United States, 1932–97. J Clim 13:3625–3637. doi:10.1175/1520-0442(2000)013<3625:PADFTI>2.0.CO;2

    Article  Google Scholar 

  • Prajeesh AG, Ashok K, Rao DVB (2013) Falling monsoon depression frequency: A Gray-Sikka conditions perspective. Sci Rep 3

  • Rajagopalan B, Molnar P (2012) Pacific Ocean sea-surface temperature variability and predictability of rainfall in the early and late parts of the Indian summer monsoon season. Clim Dyn 39:1543–1557. doi:10.1007/s00382-011-1194-y

    Article  Google Scholar 

  • Rajeevan M, Bhate J, Kale JD, Lal B (2006) High resolution daily gridded rainfall data for the Indian region: analysis of break and active monsoon spells. Curr Sci 91:296–306

    Google Scholar 

  • Rajeevan M, Bhate J, Jaswal AK (2008) Analysis of variability and trends of extreme rainfall events over India using 104 years of gridded daily rainfall data. Geophys Res Lett 35:L18707

    Article  Google Scholar 

  • Revi A (2008) Climate change risk: an adaptation and mitigation agenda for Indian cities. Environ Urban 20:207–229. doi:10.1177/0956247808089157

    Article  Google Scholar 

  • Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360–363. doi:10.1038/43854

    Google Scholar 

  • Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J Clim 21:2283–2296

    Article  Google Scholar 

  • Trenberth KE, Dai A, Rasmussen RM, Parsons DB (2003) The changing character of precipitation. Bull Am Meteorol Soc 84:1205–1217. doi:10.1175/BAMS-84-9-1205

    Article  Google Scholar 

  • Tubiello FN, Soussana J-F, Howden SM (2007) Crop and pasture response to climate change. Proc Natl Acad Sci 104:19686–19690. doi:10.1073/pnas.0701728104

    Article  Google Scholar 

  • Turner AG, Annamalai H (2012) Climate change and the South Asian summer monsoon. Nat Clim Change 2:587–595. doi:10.1038/nclimate1495

    Article  Google Scholar 

  • Ummenhofer CC, Gupta AS, Li Y, Taschetto AS, England MH (2011) Multi-decadal modulation of the El Nino–Indian monsoon relationship by Indian Ocean variability. Environ Res Lett 6:034006

    Article  Google Scholar 

  • Vinayachandran PN, Francis PA, Rao SA (2009) Indian Ocean dipole: Processes and impacts. In: Mukunda, N. (ed) Current trends in science, platinum jubilee special. Indian Academy of Sciences, pp 569–589

  • Wang X, Wang C (2014) Different impacts of various El Niño events on the Indian Ocean dipole. Clim Dyn 42(3–4):991–1005

    Article  Google Scholar 

  • Wang P, Baines A, Lavine M, Smith G (2012) Modelling ozone injury to U.S. forests. Environ Ecol Stat 19:461–472. doi:10.1007/s10651-012-0195-2

    Article  Google Scholar 

  • Wang B, Yim S-Y, Lee J-Y, Liu J, Ha K-J (2013) Future change of Asian-Australian monsoon under RCP 4.5 anthropogenic warming scenario. Clim Dyn 42:83–100. doi:10.1007/s00382-013-1769-x

  • West M, Harrison PJ, Migon HS (1985) Dynamic generalized linear models and bayesian forecasting. J Am Stat Assoc 80:73–83. doi:10.1080/01621459.1985.10477131

    Article  Google Scholar 

  • Yee TW, Mitchell ND (1991) Generalized additive models in plant ecology. J Veg Sci 2:587–602. doi:10.2307/3236170

    Article  Google Scholar 

  • Zhai P, Zhang X, Wan H, Pan X (2005) Trends in total precipitation and frequency of daily precipitation extremes over China. J Clim 18:1096–1108. doi:10.1175/JCLI-3318.1

Download references

Acknowledgments

We would like to thank the jointly administered Changing Water Cycle programme of the Ministry of Earth Sciences (Grant Ref: MoES/NERC/16/02/10 PC-11), Government of India and Natural Environment Research Council (Grant Ref: NE/I022450/1), United Kingdom for financial support. We thank the two anonymous reviewers and editor for their helpful comments and suggestions on an earlier version of this article. We dedicate this paper to our colleague and co-author Professor Mike Bonell who passed away on July 11th, 2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagdish Krishnaswamy.

Additional information

M. Bonell—Deceased on 11 July 2014.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 4,664 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnaswamy, J., Vaidyanathan, S., Rajagopalan, B. et al. Non-stationary and non-linear influence of ENSO and Indian Ocean Dipole on the variability of Indian monsoon rainfall and extreme rain events. Clim Dyn 45, 175–184 (2015). https://doi.org/10.1007/s00382-014-2288-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-014-2288-0

Keywords

Navigation