Skip to main content

Advertisement

Log in

Loss of predictive skill of indian summer monsoon rainfall in NCEP CFSv2 due to misrepresentation of Atlantic zonal mode

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Observational and modeling studies have identified an El Niño Southern Oscillation (ENSO) like Ocean-Atmospheric coupled phenomenon in the tropical Atlantic during the boreal summer season, popularly known as Atlantic Zonal Mode (AZM). The atmospheric teleconnection between the AZM and Indian Summer Monsoon Rainfall (ISMR) is significant especially in non-ENSO years. Hence, realistic simulation of AZM and its teleconnection with ISMR in coupled Ocean-Atmospheric models is important in improving the predictive skill of ISMR. Here, we analyzed the outputs of nine-month hindcast simulations of a coupled ocean-atmospheric model (NCEP CFSv2) in estimating the prediction skill of AZM and its teleconnection with ISMR. It is found that the AZM prediction skill in CFSv2 hindcasts initialized in the month of February (FebIC) is poor and it simulates an unrealistic teleconnection with ISMR. The CFSv2 FebIC hindcasts are unable to forecast the correct phase of the low level wind anomalies over western Atlantic basin, which leads to an error in the forecast of AZM. It is shown here that the error in the prediction of AZM and its erroneous teleconnection with ISMR leads to a loss of prediction skill of ISMR in CFSv2 FebIC hindcasts. It is further noted that the shorter lead time forecast of CFSv2 initialized in the month of May (MayIC hindcasts) shows improved prediction skill of AZM and its associated teleconnection with ISMR compared to the longer lead time forecast (FebIC hindcasts). However, the prediction skill of ISMR is low in MayIC hindcasts compared to FebIC hindcasts. We find that the low prediction skill of ISMR in May IC hindcasts is due to the misrepresentation of the teleconnection between ENSO and ISMR. A notable improvement in the prediction skill of ISMR in CFSv2 can be achieved by combining the ENSO induced ISMR from FebIC hindcasts and AZM induced ISMR from MayIC hindcasts. These results aid in improving the ISMR seasonal forecast in CFSv2. Besides, this study highlights the need to improve the Atlantic variability and its teleconnection with ISMR in the pursuit of improving prediction skill of ISMR in coupled climate models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Ashok K, Guan Z, Yamagata T (2001) Impact of the Indian Ocean Dipole on the relationship between the Indian monsoon rainfall and ENSO. Geophys Res Lett 28(23):4499–4502

    Article  Google Scholar 

  • Behringer D, Xue Y (2004) Evaluation of the global ocean data assimilation system at NCEP: the Pacific Ocean. In: Proc. eighth symp. on integrated observing and assimilation systems for atmosphere, oceans, and land surface, AMS 84th Annual Meeting, Seattle, Washington, USA

  • Bjerknes J (1969) Atmospheric teleconnections from the equatorial Pacific. Mon Weather Rev 97(3):163–172

    Article  Google Scholar 

  • Burls N, Reason CC, Penven P, Philander S (2012) Energetics of the tropical Atlantic zonal mode. J Clim 25(21):7442–7466

    Article  Google Scholar 

  • Carton JA, Huang B (1994) Warm events in the tropical Atlantic. J Phys Oceanogr 24(5):888–903

    Article  Google Scholar 

  • Chang P, Fang Y, Saravanan R, Ji L, Seidel H (2006) The cause of the fragile relationship between the Pacific El nino and the Atlantic Nino. Nature 443(7109):324–328

    Article  Google Scholar 

  • Chattopadhyay R, Phani R, Sabeerali CT, Dhakate A, Salunke K, Mahapatra S, Rao AS, Goswami B (2015a) Influence of extratropical sea-surface temperature on the Indian summer monsoon: an unexplored source of seasonal predictability. Q J R Meteorol Soc 141(692):2760–2775

    Article  Google Scholar 

  • Chattopadhyay R, Rao SA, Sabeerali CT, George G, Rao DN, Dhakate A, Salunke K (2015b) Large-scale teleconnection patterns of Indian summer monsoon as revealed by CFSv2 retrospective seasonal forecast runs. Int J Climatol. https://doi.org/10.1002/joc.4556

  • Cherchi A, Gualdi S, Behera S, Luo JJ, Masson S, Yamagata T, Navarra A (2007) The influence of tropical Indian Ocean SST on the Indian summer monsoon. J Clim 20:3083–3105

    Article  Google Scholar 

  • Dee DP, Uppala S, Simmons A, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda M, Balsamo G, Bauer P et al (2011) The ERA-Interim Reanalysis: Configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597

    Article  Google Scholar 

  • Delecluse P, Servain J, Levy C, Arpe K, Bengtsson L (1994) On the connection between the 1984 Atlantic warm event and the 1982–1983 ENSO. Tellus A 46(4):448–464

    Article  Google Scholar 

  • Ding H, Keenlyside NS, Latif M (2010) Equatorial Atlantic interannual variability: Role of heat content. J Geophys Res Oceans 115:C09020. https://doi.org/10.1029/2010JC006304

    Article  Google Scholar 

  • Ding H, Keenlyside NS, Latif M (2012) Impact of the equatorial Atlantic on the El Niño southern oscillation. Clim Dyn 38(9–10):1965–1972

    Article  Google Scholar 

  • Ding H, Keenlyside N, Latif M, Park W, Wahl S (2015a) The impact of mean state errors on equatorial Atlantic interannual variability in a climate model. J Geophys Res Oceans 120(2):1133–1151

    Article  Google Scholar 

  • Ding H, Greatbatch RJ, Latif M, Park W (2015b) The impact of sea surface temperature bias on equatorial Atlantic interannual variability in partially coupled model experiments. Geophys Res Lett 42(13):5540–5546

    Article  Google Scholar 

  • Ek M, Mitchell K, Lin Y, Rogers E, Grunmann P, Koren V, Gayno G, Tarpley J (2003) Implementation of NOAH land surface model advances in the National Centers for Environmental Prediction operational mesoscale ETA model. J Geophys Res Atmos. https://doi.org/10.1029/2002JD003296

  • Foltz GR, McPhaden MJ (2010) Interaction between the Atlantic meridional and Niño modes. Geophys Res Lett. https://doi.org/10.1029/2010GL044001

  • Frauen C, Dommenget D (2012) Influences of the tropical Indian and Atlantic Oceans on the predictability of ENSO. Geophys Res Lett. https://doi.org/10.1029/2011GL050520

  • Gadgil S, Gadgil S (2006) The Indian monsoon, GDP and agriculture. Economic and political weekly, pp 4887–4895

  • Gadgil S, Srinivasan J (2011) Seasonal prediction of the Indian monsoon. Curr Sci (Bangalore) 100(3):343–353

    Google Scholar 

  • Gadgil S, Rajeevan M, Nanjundiah R (2005) Monsoon predictionwhy yet another failure. Curr Sci 88(9):1389–1400

    Google Scholar 

  • George G, Rao DN, Sabeerali CT, Srivastava A, Rao SA (2016) Indian summer monsoon prediction and simulation in CFSv2 coupled model. Atmos Sci Lett 17(1):57–64

    Article  Google Scholar 

  • Gill AE (1980) Some simple solutions for heat-induced tropical circulation. Q J R Meteorol Soc 106:447–462

    Article  Google Scholar 

  • Griffies S, Harrison M, Pacanowski R, Rosati A (2004) A technical guide to MOM4 GFDL Ocean group technical report no. 5, NOAA. Geophysical Fluid Dynamics, Laboratory

  • Huang B, Schopf PS, Pan Z (2002) The ENSO effect on the tropical Atlantic variability: a regionally coupled model study. Geophys Res Lett. https://doi.org/10.1029/2002GL014872

  • Huang B, Schopf PS, Shukla J (2004) Intrinsic ocean-atmosphere variability of the tropical Atlantic Ocean. J Clim 17(11):2058–2077

    Article  Google Scholar 

  • Huffman GJ, Adler RF, Rudolf B, Schneider U, Keehn PR (1995) Global precipitation estimates based on a technique for combining satellite-based estimates, rain gauge analysis, and NWP model precipitation information. J Clim 8(5):1284–1295

    Article  Google Scholar 

  • Jansen MF, Dommenget D, Keenlyside N (2009) Tropical atmosphere-ocean interactions in a conceptual framework. J Clim 22(3):550–567

    Article  Google Scholar 

  • Kajtar JB, Santoso A, England MH, Cai W (2017) Tropical climate variability: interactions across the Pacific, Indian, and Atlantic Oceans. Clim Dyn 48(7–8):2173–2190

    Article  Google Scholar 

  • Kanamitsu M, Ebisuzaki W, Woollen J, Yang SK, Hnilo J, Fiorino M, Potter G (2002) NCEP-DOE AMIP-II Reanalysis (R-2). Bull Am Meteorol Soc 83(11):1631–1643

    Article  Google Scholar 

  • Keenlyside NS, Latif M (2007) Understanding equatorial Atlantic interannual variability. J Clim 20(1):131–142

    Article  Google Scholar 

  • Keenlyside NS, Ding H, Latif M (2013) Potential of equatorial Atlantic variability to enhance El niño prediction. Geophys Res Lett 40(10):2278–2283

    Article  Google Scholar 

  • Kucharski F, Joshi MK (2017) Influence of tropical south Atlantic sea-surface temperatures on the Indian summer monsoon in CMIP5 models. Q J R Meteorol Soc 143(704):1351–1363

    Article  Google Scholar 

  • Kucharski F, Bracco A, Yoo J, Molteni F (2007) Low-frequency variability of the Indian monsoon-ENSO relationship and the tropical Atlantic: The weakening of the 1980s and 1990s. J Clim 20(16):4255–4266

    Article  Google Scholar 

  • Kucharski F, Bracco A, Yoo J, Molteni F (2008) Atlantic forced component of the Indian monsoon interannual variability. Geophys Res Lett. https://doi.org/10.1029/2007GL033037

  • Kumar KK, Rajagopalan B, Cane MA (1999) On the weakening relationship between the Indian monsoon and ENSO. Science 284(5423):2156–2159

    Article  Google Scholar 

  • Latif M, Grötzner A (2000) The equatorial Atlantic oscillation and its response to ENSO. Clim Dyn 16(2):213–218

    Article  Google Scholar 

  • Losada T, Rodríguez-Fonseca B, Polo I, Janicot S, Gervois S, Chauvin F, Ruti P (2010) Tropical response to the Atlantic Equatorial mode: AGCM multimodel approach. Clim Dyn 35(1):45–52

    Article  Google Scholar 

  • Lübbecke JF, Böning CW, Keenlyside NS, Xie SP (2010) On the connection between Benguela and equatorial Atlantic Niños and the role of the South Atlantic Anticyclone. J Geophys Res Oceans. https://doi.org/10.1029/2009JC005964

  • Matsuno T (1966) Quasi-geostrophic motions in the equatorial area. J Meteorol Soc Jpn 44(1):25–43

    Article  Google Scholar 

  • Moorthi S, Pan HL, Caplan P (2001) Changes to the 2001 NCEP operational MRF/AVN global analysis/forecast system. In: NWS Technical Procedures Bulletin 484. National Oceanic and Atmospheric Administration, National Weather Service, Office of Meteorology, Washington DC, USA, pp 14. https://rda.ucar.edu/datasets/ds093.0/docs/484.pdf

  • Murtugudde R, McCreary JP, Busalacchi AJ (2000) Oceanic processes associated with anomalous events in the Indian Ocean with relevance to 1997–1998. J Geophys Res Oceans 105(C2):3295–3306

    Article  Google Scholar 

  • Okumura Y, Xie SP (2006) Some overlooked features of tropical Atlantic climate leading to a new Niño-like phenomenon. J Clim 19(22):5859–5874

    Article  Google Scholar 

  • Palmer T, Doblas-Reyes F, Hagedorn R, Alessandri A, Gualdi S, Andersen U, Feddersen H, Cantelaube P, Terres J, Davey M et al (2004) Development of a European multimodel ensemble system for seasonal-to-interannual prediction (DEMETER). Bull Am Meteorol Soc 85(6):853–872

    Article  Google Scholar 

  • Pattanaik D, Kumar A (2015) A hybrid model based on latest version of NCEP CFS coupled model for Indian monsoon rainfall forecast. Atmos Sci Lett 16(1):10–21

    Article  Google Scholar 

  • Philander SG (1990) El Niño, La Niña, and the Southern Oscillation. In: Dmowska R, Holton JR (eds) International geophysics series, vol 46, Academic Press, New York, pp 1–293. https://doi.org/10.1016/S0074-6142(13)60002-9

  • Pottapinjara V, Girishkumar M, Ravichandran M, Murtugudde R (2014) Influence of the Atlantic zonal mode on monsoon depressions in the Bay of Bengal during boreal summer. J Geophys Res Atmos 119(11):6456–6469

    Article  Google Scholar 

  • Pottapinjara V, Girishkumar M, Sivareddy S, Ravichandran M, Murtugudde R (2016) Relation between the upper ocean heat content in the equatorial Atlantic during boreal spring and the Indian monsoon rainfall during June-September. Int J Climatol 36(6):2469–2480

    Article  Google Scholar 

  • Rajeevan M, Unnikrishnan CK, Preethi B (2012) Evaluation of the ENSEMBLES multi-model seasonal forecasts of Indian summer monsoon variability. Clim Dyn 38(11–12):2257–2274

    Article  Google Scholar 

  • Ramu DA, Sabeerali CT, Chattopadhyay R, Rao DN, George G, Dhakate A, Salunke K, Srivastava A, Rao SA (2016) Indian summer monsoon rainfall simulation and prediction skill in the CFSv2 coupled model: Impact of atmospheric horizontal resolution. J Geophys Res Atmos. https://doi.org/10.1002/2015JD024629

  • Ramu DA, Rao SA, Pillai PA, Pradhan M, George G, Rao DN, Mahapatra S, Pai D, Rajeevan M (2017) Prediction of seasonal summer monsoon rainfall over homogenous regions of India using dynamical prediction system. J Hydrol 546:103–112

    Article  Google Scholar 

  • Rasmusson EM, Carpenter TH (1983) The relationship between eastern equatorial Pacific sea surface temperatures and rainfall over India and Sri Lanka. Mon Weather Rev 111(3):517–528

    Article  Google Scholar 

  • Rayner N, Parker DE, Horton E, Folland C, Alexander L, Rowell D, Kent E, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res Atmos. https://doi.org/10.1029/2002JD002670

  • Richter I, Xie SP (2008) On the origin of equatorial Atlantic biases in coupled general circulation models. Clim Dyn 31(5):587–598

    Article  Google Scholar 

  • Rodríguez-Fonseca B, Polo I, García-Serrano J, Losada T, Mohino E, Mechoso CR, Kucharski F (2009) Are Atlantic Niños enhancing Pacific ENSO events in recent decades? Geophys Res Lett. https://doi.org/10.1029/2009GL040048

  • Ropelewski CF, Halpert MS (1987) Global and regional scale precipitation patterns associated with the El niño/Southern Oscillation. Mon Weather Rev 115(8):1606–1626

    Article  Google Scholar 

  • Ruiz-Barradas A, Carton JA, Nigam S (2000) Structure of interannual-to-decadal climate variability in the tropical Atlantic sector. J Clim 13(18):3285–3297

    Article  Google Scholar 

  • Saha S, Moorthi S, Wu X, Wang J, Nadiga S, Tripp P, Behringer D, Hou YT, Hy Chuang, Iredell M (2014a) The NCEP climate forecast system version 2. J Clim 27(6):2185–2208. https://doi.org/10.1175/JCLI-D-12-00823.1

    Article  Google Scholar 

  • Saha SK, Pokhrel S, Chaudhari HS, Dhakate A, Shewale S, Sabeerali CT, Salunke K, Hazra A, Mahapatra S, Rao AS (2014b) Improved simulation of Indian summer monsoon in latest NCEP climate forecast system free run. Int J Climatol 34(5):1628–1641

    Article  Google Scholar 

  • Sahai AK, Sharmila S, Abhilash S, Chattopadhyay R, Borah N, Krishna R, Joseph S, Roxy M, De S, Pattnaik S et al (2013) Simulation and extended range prediction of monsoon intraseasonal oscillations in NCEP CFS/GFS version 2 framework. Curr Sci 104(10):1394–1408

    Google Scholar 

  • Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401(6751):360–363

    Google Scholar 

  • Shukla J (1987) Interannual variability of monsoons. In: Fein JS, Stephens PL (eds) Monsoons. Wiley-Interscience, New York, pp 399–464 ISBN 978-0471874164

    Google Scholar 

  • Stockdale TN, Balmaseda MA, Vidard A (2006) Tropical Atlantic SST prediction with coupled Ocean-Atmosphere GCMs. J Clim 19(23):6047–6061

    Article  Google Scholar 

  • Wahl S, Latif M, Park W, Keenlyside N (2011) On the tropical Atlantic SST warm bias in the Kiel climate model. Clim Dyn 36(5–6):891–906

    Article  Google Scholar 

  • Wang C, Kucharski F, Barimalala R, Bracco A (2009) Teleconnections of the tropical Atlantic to the tropical Indian and Pacific Oceans: A review of recent findings. Meteorol Z 18(4):445–454

    Article  Google Scholar 

  • Wang C, Zhang L, Lee SK, Wu L, Mechoso CR (2014) A global perspective on CMIP5 climate model biases. Nat Clim Change 4(3):201–205

    Article  Google Scholar 

  • Webster PJ, Moore AM, Loschnigg JP, Leben RR (1999) Coupled ocean-atmosphere dynamics in the Indian Ocean during 1997–98. Nature 401(6751):356–360

    Article  Google Scholar 

  • Winton M (2000) A reformulated three-layer sea ice model. J Atmos Ocean Technol 17(4):525–531

    Article  Google Scholar 

  • Xie SP, Carton JA (2004) Tropical Atlantic Variability: Patterns, Mechanisms, and Impacts. In: Wang C, Xie SP, Carton JA (eds) In earth climate: the ocean–atmosphere interaction, geophys. monogr. ser., vol 147, AGU, Washington, D.C., pp 121–142. https://doi.org/10.1029/147GM07

  • Zebiak SE (1993) Air-sea interaction in the equatorial Atlantic region. J Clim 6(8):1567–1586

    Article  Google Scholar 

Download references

Acknowledgements

This research is funded by the Monsoon Mission project of the Earth System Science Organization (ESSO), Ministry of Earth Sciences (MoES), Government of India (Grant No. MM/SERP/NYU/2014/SSC-01/002). The Center for prototype Climate Modeling is fully supported by the Abu Dhabi Government through New York University Abu Dhabi Research Institute Grant. We thank NCAR for making available the NCAR Command Language (NCL). Authors also acknowledge NCEP, USA for making available the CFSv2 retrospective forecast data. All other data sources are duly acknowledged. We acknowledge Dr. V. Praveen for his help in tracking the monsoon depression in CFSv2 hindcasts. We thank the Editor and three anonymous reviewers for careful evaluation of the manuscript and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Ajayamohan.

Additional information

Monsoon Mission Project, of the Earth System Science Organization, Ministry of Earth Sciences (MoES), Government of India (Grant No. MM/SERP/NYU/2014/SSC-01/002).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabeerali, C.T., Ajayamohan, R.S. & Rao, S.A. Loss of predictive skill of indian summer monsoon rainfall in NCEP CFSv2 due to misrepresentation of Atlantic zonal mode. Clim Dyn 52, 4599–4619 (2019). https://doi.org/10.1007/s00382-018-4390-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-018-4390-1

Keywords

Navigation