Skip to main content

Advertisement

Log in

Oceanic factors controlling the Indian summer monsoon onset in a coupled model

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Despite huge socio-economical impacts, the predictability of the Indian summer monsoon (ISM) onset remains drastically limited by the inability of both current forced and coupled models to reproduce a realistic monsoon seasonal cycle. In the SINTEX-F2 coupled model, the mean ISM onset estimated with rainfall or thermo-dynamical indices is delayed by approximately 13 days, but it occurs 6 days early in the atmosphere-only component of the coupled model. This 19 days lag between atmospheric-only and coupled runs, which is well above the observed standard-deviation of the ISM onset (10 days in the observations), suggests a crucial role of the coupling, including Sea Surface Temperatures (SST) biases, on the delayed mean onset in the coupled model. On the other hand, the key-factors governing the interannual variability of the ISM onset date are also fundamentally different in the atmospheric and coupled experiments and highlight the importance of El Niño–Southern Oscillation (ENSO) and ocean–atmosphere coupling for a realistic simulation of the variability of the ISM onset date. At both interannual and seasonal timescales, we demonstrate the importance of the meridional gradients of tropospheric temperature, moisture and vertical shear of zonal wind in the Indian Ocean for a realistic ISM onset simulation. Taking into account that the tropical tropospheric temperature and the vertical shear are not only controlled by local processes, but also by large-scale processes, we need to examine not only the Indian Ocean SST biases, but also those in others tropical basins in order to understand the delay of the mean onset date in the coupled model. During April and May, the main tropical SST biases in the coupled model are a strong warm bias in the Indian, Pacific and Atlantic Oceans, associated with an important excess of equatorial precipitations, and thus a warmer equatorial free troposphere. In order to identify the keys tropical SST regions influencing the mean ISM onset date, sensitivity coupled experiments have been performed. In these experiments, the SST is corrected separately in each tropical basin. The correction of SST biases in the tropical Indian and Atlantic oceans only slightly improves the onset date in the coupled model and produces “El Niño-like” changes in the tropical Pacific. Conversely, the correction of the Pacific SST biases advances the onset date by 9 days compared to the control coupled run. These results suggest that, while the correction of Indian SST biases improves the rainfall spatial distribution, the delayed mean ISM onset date is mainly control by the tropical Pacific Ocean SST biases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abe M, Hori M, Yasunari T, Kitoh A (2013) Effects of the Tibetan Plateau on the onset of the summer monsoon in South Asia: the role of the air-sea interaction. J Geophys Res 118:1760–1776. doi:10.1002/jgrd.50210

    Article  Google Scholar 

  • Ananthakrishnan R, Soman MK (1988) The onset of the southwest monsoon over Kerala: 1901–1980. J Climatol 8:283–296. doi:10.1002/joc.3370080305

    Article  Google Scholar 

  • Annamalai H, Liu P, Xie S-P (2005) Southwest Indian Ocean SST variability: its local effect and remote influence on Asian Monsoons. J Clim 18:4150–4167

    Article  Google Scholar 

  • Bamzai A, Marx L (2000) COLA AGCM simulation of the effect of anomalous spring snow over Eurasia on the Indian summer monsoon. Q J R Meteorol Soc 2575–2584. doi:10.1002/qj.49712656811

  • Bamzai A, Shukla J (1999) Relation between Eurasian snow cover, snow depth, and the Indian summer monsoon: an observational study. J Clim 3117–3132. doi:10.1175/1520-0442(1999)012<3117:RBESCS>2.0.CO;2

  • Bollasina M, Ming Y (2013) The general circulation model precipitation bias over the southwestern equatorial Indian Ocean and its implications for simulating the South Asian monsoon. Clim Dyn 40 (3–4). doi:10.1007/s00382-012-1347-7

  • Boschat G, Terray P, Masson S (2011) Interannual relationships between Indian Summer Monsoon and Indo-Pacific coupled modes of variability during recent decades. Clim Dyn 37:1019–1043. doi:10.1007/s00382-010-0887-y

    Article  Google Scholar 

  • Boschat G, Terray P, Masson S (2012) Robustness of SST teleconnections and precursory patterns associated with the Indian summer monsoon. Clim Dyn 38:2143–2165. doi:10.1007/s00382-011-1100-7

    Article  Google Scholar 

  • Boschat G, Terray P, Masson S (2013) Extratropical forcing of ENSO. Geophys Res Lett 40:1–7. doi:10.1002/grl.50229

    Article  Google Scholar 

  • Cherchi A, Navarra A (2003) Reproducibility and predictability of the Asian summer monsoon in the ECHAM4-GCM. Clim Dyn 20:365–379. doi:10.1007/s00382-002-0280-6

    Google Scholar 

  • Dai et al (2013) The relative roles of upper and lower tropospheric thermal contrasts and tropical influences in driving Asian summer monsoons. J Geophys Res Atmos 118:7024–7045. doi:10.1002/jgrd.50565

    Article  Google Scholar 

  • Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi:10.1002/qj.828

    Article  Google Scholar 

  • Duchon CE (1979) Lanczos filtering in one and two dimensions. J Appl Meteorol 18:1016–1022

    Article  Google Scholar 

  • Fasullo J (2004) A stratified diagnosis of the Indian monsoon-Eurasian snow cover relationship. J Clim 17(5):1110–1122

    Article  Google Scholar 

  • Fasullo J, Webster P (2003) A hydrological definition of Indian monsoon onset and withdrawal. J Clim 16:3200–3211

    Article  Google Scholar 

  • Flatau M, Flatau P, Rudnick D (2001) The dynamics of double monsoon onsets. J Clim 14:4130–4146. doi:10.1175/1520-0442(2001)014<4130:TDODMO>2.0.CO;2

    Article  Google Scholar 

  • Flohn H (1957) Large-scale aspects of the ‘‘summer monsoon’’ in south and east Asia. J Meteorol Soc Jpn 35:180–186

    Google Scholar 

  • Francis PA, Gadgil S (2010) Towards understanding the unusual Indian monsoon in 2009. J Earth Syst Sci 119:397–415

    Article  Google Scholar 

  • Frauen C, Dommenget D (2012) Influences of the tropical Indian and Atlantic Oceans on the predictability of ENSO. Geophys Res Lett 39(2):L02706. doi:10.1029/2011GL050520

    Google Scholar 

  • Fu X, Wang B (2004) The boreal summer intraseasonal oscillations simulated in a hybrid coupled atmosphere-ocean model. Mon Weather Rev 132:2628–2649

    Article  Google Scholar 

  • Fu X, Wang B, Li T, McCreary J (2003) Coupling between northward-propagating, intraseasonal oscillations and sea surface temperature in the Indian Ocean. J Atmos Sci 60(15):1733–1753

    Article  Google Scholar 

  • Fu X, Wang B, Waliser DE, Tao L (2007) Impact of atmosphere–ocean coupling on the predictability of monsoon intraseasonal oscillations. J Atmos Sci 64:157–174

    Article  Google Scholar 

  • Goswami BN (2005a) South Asian summer monsoon: an overview. In: Chang C-P, Wang B, Gabriel Lau N-C (eds) The global monsoon system: research and forecast, chapter 5. WMO TD No. 1266, WMO, Geneva, pp 47

  • Goswami BN (2005b) South Asian monsoon. In: Waliser DE, Lau WK-M (eds) Intraseasonal variability in the atmosphere-ocean climate system. Springer, Berlin, pp 19–62

    Chapter  Google Scholar 

  • Goswami P, Gouda KC (2010) Evaluation of a Dynamical basis for advance forecasting of the date of onset of monsoon rainfall over India. Mon Weather Rev 138:3120–3141. doi:10.1175/2010MWR2978.1

    Article  Google Scholar 

  • Goswami B, Xavier P (2005) ENSO control on the south Asian monsoon through the length of the rainy season. Geophys Res Lett 32:L18717. doi:10.1029/2005GL023216

    Google Scholar 

  • Goswami B, Kulkarni J, Mujumdar V, Chattopadhyay R (2010) On factors responsible for recent secular trend in the onset phase of monsoon intraseasonal oscillations. Int J Climatol 30:2240–2246. doi:10.1002/joc.2041

    Article  Google Scholar 

  • Guilyardi E, Delecluse P, Gualdi S, Navarra A (2003) Mechanisms for ENSO phase change in a coupled GCM. J Clim 16:1141–1158

    Article  Google Scholar 

  • He H, Sui C-H, Jian M, Wen Z, Lan G (2003) The evolution of tropospheric temperature field and its relationship with the onset of Asian summer monsoon. J Meteorol Soc Jpn 81:1201–1223. doi:10.2151/jmsj.81.1201

    Article  Google Scholar 

  • Huffman GJ, Adler RF, Arkin P, Chang A, Ferraro R, Gruber A, Janowiak J, McNab A, Rudolf B, Schneider U (1997) The global precipitation climatology project (GPCP) combined precipitation dataset. BAMS 78:5–20

    Article  Google Scholar 

  • Jiang XN, Li T, Wang B (2004) Structures and mechanisms of the northward propagating boreal summer intraseasonal oscillation. J Clim 17:1022–1039

    Article  Google Scholar 

  • Joseph P, Eischeid J, Pyle R (1994) Interannual variability of the onset on the Indian summer monsoon and its association with atmospheric features, El Niño, and sea surface temperature anomalies. J Clim 7:81–105

    Article  Google Scholar 

  • Joseph PV, Sooraj KP, Rajan CK (2003) Conditions leading to monsoon onset over Kerala and the associated Hadley cell. Mausam 54(1):155–164

    Google Scholar 

  • Joseph P, Sooraj K, Rajan C (2006) The summer monsoon onset process over South Asia and an objective method for the date of monsoon onset over Kerala. Int J Climatol 1893:1871–1893. doi:10.1002/joc

    Article  Google Scholar 

  • Joseph S, Sahai A, Goswami B, Terray P, Masson S, Luo J–J (2011) Possible role of warm SST bias in the simulation of boreal summer monsoon in SINTEX-F2 coupled model. Clim Dyn. doi:10.1007/s00382-011-1264-1

    Google Scholar 

  • Keenlyside NS, Ding H, Latif M (2013) Potential of equatorial Atlantic variability to enhance El Niño prediction. Geophys Res Lett 40. doi:10.1002/grl.50362

  • Klein SA, Soden BJ, Lau NC (1999) Remote sea surface temperature variations during ENSO: evidence for a tropical atmospheric bridge. J Clim 12:917–932

    Article  Google Scholar 

  • Klingaman NP, Woolnough SJ, Weller H, Slingo JM (2011) The impact of finer-resolution air-sea coupling on the intraseasonal oscillation of the Indian monsoon. J Clim 24:2451–2468. doi:10.1175/2010JCLI3868.1

    Article  Google Scholar 

  • Kripalani RH, Oh JH, Kulkarni A, Sabade SS, Chaudhari HS (2007) South Asian summer monsoon precipitation variability: coupled climate model simulations and projections under IPCC AR4. Theoret Appl Climatol 90:133–159. doi:10.1007/s00704-006-0282-0

    Article  Google Scholar 

  • Krishnamurti T (1985) Summer monsoon experiment—a review. Mon Weather Rev 113:1590–1626

    Article  Google Scholar 

  • Krishna Kumar K, Hoerling M, Rajagopalan B (2005) Advancing dynamical prediction of Indian monsoon rainfall. Geophys Res Lett 32:L08704. doi:10.1029/2004GL021979

  • Krishnan R, Sundaram S, Swapna P, Kumar V, Ayantika DC, Mujumdar M (2010) The crucial role of ocean-atmosphere coupling on the Indian monsoon anomalous response during dipole events. Clim Dyn. doi:10.1007/s00382-010-0830-2

    Google Scholar 

  • Kucharski F, Bracco A, Yoo JH, Molteni F (2008) Atlantic forced component of the Indian monsoon interannual variability. Geophys Res Lett 35:L04706. doi:10.1029/2007GL033037

    Google Scholar 

  • Kug JS, An SI, Jin FF, Kang IS (2005) Preconditions for El Niño and La Niña onsets and their relation to the Indian ocean. Geophys Res Lett 32(L05):706. doi:10.1029/2004GL021674

    Google Scholar 

  • Kummerow C et al (2001) The evolution of the Goddard profiling algorithm (GPROF) for rainfall estimation from passive microwave sensors. J Appl Meteorol 40:1801–1820

    Article  Google Scholar 

  • Lau N-C, Nath MJ (2012) A Model study of the air-sea interaction associated with the climatological aspects and interannual variability of the South Asian summer monsoon development. J Clim 25:839–857. doi:10.1175/JCLI-D-11-00035.1

    Article  Google Scholar 

  • Lee et al (2013) Real-time multivariate indices for the boreal summer intraseasonal oscillation over the Asian summer monsoon region. Clim Dyn 40:493–509

    Article  Google Scholar 

  • Li C, Yanai M (1996) The Onset and interannual variability of the Asian summer monsoon in relation to land–sea thermal contrast. J Climate 9:358–375. doi:10.1175/1520-0442(1996)009,0358:TOAIVO.2.0.CO;2

  • Luo J-J, Masson S, Behera SK, Delecluse P, Gualdi S, Navarra A, Yamagata T (2003) South Pacific origin of the decadal ENSO-like variation as simulated by a coupled GCM. Geophys Res Lett 30:2250. doi:10.1029/L018649

    Article  Google Scholar 

  • Luo J-J, Masson S, Roeckner E, Madec G, Yamagata T (2005) Reducing climatology bias in an Ocean-atmosphere CGCM with improved coupling physics. J Clim 18:2344–2360. doi:10.1175/JCLI3404.1

    Article  Google Scholar 

  • Madec G (2008) NEMO ocean engine. Note du Pole de modelisation, Institut Pierre-Simon Laplace (IPSL) No 27. ISSN No 1288–1619

  • Marathayil D, Turner AG, Shaffrey LC, Clevine RC (2013) Systematic winter sea-surface temperature biases in the northern Arabian Sea in HiGEM and the CMIP3 models. Environ Res Lett 8:014028. doi:10.1088/1748-9326/8/1/014028

    Article  Google Scholar 

  • Masson S, Luo J–J, Madec G et al (2005) Impact of barrier layer on winter-spring variability of the southeastern Arabian Sea. Geophys Res Lett 32:L07703. doi:10.1029/2004GL021980

    Google Scholar 

  • Masson S, Terray P, Madec G, Luo J–J, Yamagata T, Takahashi K (2012) Impact of intra-daily SST variability on ENSO characteristics in a coupled model. Clim Dyn. doi:10.1007/s00382-011-1247-2

    Google Scholar 

  • Minoura D, Kawamura R, Matsuura T (2003) A mechanism of the onset of the South Asian Summer Monsoon. J Meteorol Soc Jpn 81:563–580

    Article  Google Scholar 

  • Nordeng TE (1994) Extended versions of the convective parametrization scheme at ECMWF and their impact on the mean and transient activity of the model in the Tropics. ECMWF Research Department, Techn Mem 206, October 1994, European Center for Medium Range Weather Forecasts, Reading, UK

  • DS, Nair RM (2009) Summer monsoon onset over Kerala: new definition and prediction. J Earth Syst Sci 118:123–135. doi:10.1007/s12040-009-0020-y

  • Park HS, Chiang JHC, Lintner B, Zhang GJ (2010) The Delayed Effect of Major El Nino Events on Indian Monsoon Rainfall. J Climate 23:932–946. doi:10.1175/2009JCLI2916.1

    Article  Google Scholar 

  • Prodhomme C, Terray P, Masson S, Izumo T, Tozuka T, Yamagata T (2014) Impacts of Indian Ocean SST biases on the Indian Monsoon: as simulated in a global coupled model. Clim Dyn 42:271–290. doi:10.1007/s00382-013-1671-6

    Article  Google Scholar 

  • Rajagopalan B, Molnar P (2013) Signatures of Tibetan Plateau heating on Indian summer monsoon rainfall variability. J Geophys Res 118:1–9. doi:10.1002/jgrd.50124

    Google Scholar 

  • Rajendran K, Kitoh A (2006) Modulation of tropical intraseasonal oscillations by ocean–atmosphere coupling. J Clim 19:366–391. doi:10.1175/JCLI3638.1

    Article  Google Scholar 

  • Rajendran K, Nanjundiah RS, Srinivasan J (2002) The impact of surface hydrology on the simulation of tropical intraseasonal oscillation in NCAR (CCM2) atmospheric GCM. J Meteorol Soc Jpn 80:1357–1381

    Article  Google Scholar 

  • Ramesh Kumar MR, Sankar S, Reason C (2009) An investigation into the conditions leading to monsoon onset over Kerala. Theoret Appl Climatol 95:69–82. doi:10.1007/s00704-008-0376-y

    Article  Google Scholar 

  • Ratna SB, Sikka DR, Dalvi M, Venkata Ratnam J (2011) Dynamical simulation of Indian summer monsoon circulation, rainfall and its interannual variability using a high resolution atmospheric general circulation model. Int J Climatol 31:1927–1942. doi:10.1002/joc.2202

    Article  Google Scholar 

  • Reynolds RW, Smith TM, Liu C, Chelton DB, Casey KS, Schlax MG (2007) Daily high-resolution-blended analyses for sea surface temperature. J Clim 20:5473–5496. doi:10.1175/2007JCLI1824.1

    Article  Google Scholar 

  • Rodriguez-Fonseca B, Polo I, Garcia-Serrano J, Losada T, Mohino E, Mechoso CR, Kucharski F (2009) Are Atlantic Niños enhancing Pacific ENSO events in recent decades? Geophys Res Lett 36(20):L20705. doi:10.1029/2009GL040048

    Article  Google Scholar 

  • Roeckner E, Baüml G, Bonaventura L, Brokopf R, Esch M, Girogetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM 5, Part I, MPI Report, vol 349. Max-Planck-Institut für Meteorologie, Hamburg, p 137

    Google Scholar 

  • Roeckner E, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kornblueh L, Manzini E, Schlese U, Schulzweida U (2004) The atmospheric general circulation model ECHAM5 Part II: sensitivity of simulated climate to horizontal and vertical resolution. Max-Planck-Institute for Meteorology, MPI-Report 354, Hamburg

  • Saha SK, Halder S, Kumar KK, Goswami BN (2011) Pre-onset land surface processes and “internal” interannual variabilities of the Indian summer monsoon. Clim Dyn 36:2077–2089. doi:10.1007/s00382-010-0886-z

    Article  Google Scholar 

  • Sato T, Kimura F (2007) How does the Tibetan Plateau affect the transition of Indian monsoon rainfall? Mon Weather Rev 135:2006–2015. doi:10.1175/MWR3386.1

    Article  Google Scholar 

  • Shaman J, Tziperman E (2005) The effect of ENSO on Tibetan Plateau snow depth: a stationary wave teleconnection mechanism and implications for the South Asian monsoons. J Clim 18:2067–2079. doi:10.1175/JCLI3391.1

    Article  Google Scholar 

  • Shukla J (1987) Interannual variability of monsoons. In: Fein JS, Stephens PL (eds) Monsoons. Wiley, Amsterdam, pp 399–464

    Google Scholar 

  • Sijikumar S, Rajeev K (2012) Role of the Arabian Sea warm pool on the precipitation characteristics during the monsoon onset period. J Clim 25:1890–1899. doi:10.1175/JCLI-D-11-00286.1

    Article  Google Scholar 

  • Sobel AH, Nilsson J, Polvani LM (2001) The weak temperature gradient approximation and balanced tropical moisture waves. J Atmos Sci 58:3650–3665

    Article  Google Scholar 

  • Sobel A, Held I, Bretherton C (2002) The ENSO signal in tropical tropospheric temperature. J Clim 15:2702–2706

    Article  Google Scholar 

  • Soman MK, Slingo J (1997) Sensitivity of the Asian summer monsoon to aspects of sea surface temperature anomalies in the tropical pacific ocean. Q J R Meteorol Soc 123:309–336

    Article  Google Scholar 

  • Sperber KR, Annamalai H, Kang IS, Kitoh A, Moise A, Turner A, Wang B, Zhou T (2013) The Asian summer monsoon: an intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th Century. Clim Dyn 41:2711–2744. doi:10.1007/s00382-012-1607-6

    Article  Google Scholar 

  • Su H, Neelin JD, Meyerson JE (2003) Sensitivity of tropical tropospheric temperature to sea surface temperature forcing. J Clim 16:1283–1301

    Article  Google Scholar 

  • Taniguchi K, Koike T (2006) Comparison of definitions of Indian summer monsoon onset: better representation of rapid transitions of atmospheric conditions. Geophys Res Lett 33:L02709. doi:10.1029/2005GL024526

    Google Scholar 

  • Terray P (2011) Southern Hemisphere extra-tropical forcing: a new paradigm for El Niño-Southern Oscillation. Clim Dyn 36(11):2171–2199. doi:10.1007/s00382-010-0825-z

    Article  Google Scholar 

  • Terray P, Dominiak S (2005) Indian Ocean sea surface temperature and El Niño-Southern Oscillation: a new perspective. J Clim 1351–1368. doi: 10.1175/JCLI3338.1

  • Terray P, Kamala K, Masson S, Madec G, Sahai AK, Luo J-J, Yamagata T (2012) The role of the intra-daily SST variability in the Indian monsoon variability and monsoon-ENSO–IOD relationships in a global coupled model. Clim Dyn 39:729–754. doi:10.1007/s00382-011-1240-9

    Article  Google Scholar 

  • Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Weather Rev 117:1779–1800. doi:10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2

    Article  Google Scholar 

  • Timmermann R, Goosse H, Madec G, Fichefet T, Ethe C, Duliere V (2005) On the representation of high latitude processes in the ORCA-LIM global coupled sea ice-ocean model. Ocean Model 8(1–2):175–201

    Article  Google Scholar 

  • Turner AG, Slingo JM (2011) Using idealized snow forcing to test teleconnections with the Indian summer monsoon in the Hadley Centre GCM. Clim Dyn 36:1717–1735. doi:10.1007/s00382-010-0805-3

    Article  Google Scholar 

  • Valcke S (2006) OASIS3 user guide (prism_2-5). PRISM support initiative report 3, pp 64

  • Vernekar A, Zhou J, Shukla J (1995) The effect of Eurasian snow cover on the Indian monsoon. J Clim 8:248–266. doi:10.1175/1520-442(1995)008<0248:TEOESC>2.0.CO;2

    Article  Google Scholar 

  • Vitart F, Molteni F (2009) Dynamical extended-range prediction of early monsoon rainfall over India. Mon Weather Rev 137:1480–1492. doi:10.1175/2008MWR2761.1

    Article  Google Scholar 

  • Von Storch H, Zwiers FW (2001) Statistical analysis in climate research. Cambridge University Press, Cambridge 484 pp

    Google Scholar 

  • Wang B (2006) The Asian monsoon. Springer, New York 787 pp

    Google Scholar 

  • Wang B, LinHo (2002) Rainy season of the Asian–Pacific summer monsoon. J Clim 15: 386–398. doi:10.1175/1520-0442(2002)015<0386:RSOTAP>2.0.CO;2

  • Wang B, Xie X (1996) Low-frequency equatorial waves in vertically sheared zonal flow. Part I: stable waves. J Atmos Sci 53:449–467. doi:10.1175/1520-0469(1996)053<0449:LFEWIV>2.0.CO;2

    Article  Google Scholar 

  • Wang B, Kang I, Lee J (2004) Ensemble simulations of Asian–Australian monsoon variability by 11 AGCMs. J Clim 17:803–818

    Article  Google Scholar 

  • Wang B, Ding Q, Fu X, Kang I-S, Jin K, Shukla J, Doblas-Reyes F (2005) Fundamental challenges in simulation and prediction of summer monsoon rainfall. Geophys Res Lett 32:L15711. doi:10.1029/2005GL02273412

    Article  Google Scholar 

  • Wang B, Ding Q, Joseph V (2009) Objective definition of the Indian summer Monsoon onset using large scale winds. J Clim 22:3303–3316

    Article  Google Scholar 

  • Webster P (1983) Mechanisms of monsoon low-frequency variability: surface hydrological effects. J Atmos Sci 40:2110–2124. doi:10.1175/1520-0469(1983)040<2110:MOMLFV>2.0.CO;2

    Article  Google Scholar 

  • Webster PJ, Yang S (1992) Monsoon and ENSO: selectively interactive systems. Q J R Mefeorol Soc 118:877–926

    Article  Google Scholar 

  • Webster PJ, Magana VO, Palmer TN, Shukla J, Tomas RA, Yanai M, Yasunari T (1998) Monsoons: processes, predictability, and the prospects for prediction. J Geophys Res 103(C7):14451–14510. doi:10.1029/97JC02719

    Article  Google Scholar 

  • Woolnough SJ, Vitart F, Balmaseda MA (2007) The role of the ocean in the Madden–Julian oscillation: implications for MJO prediction. Q J R Meteorol Soc 133:117–128

    Article  Google Scholar 

  • Wu R, Kirtman B (2004) Understanding the impacts of the Indian Ocean on ENSO variability in a coupled GCM. J Clim 4019–4031. doi:10.1175/1520-0442(2004)017<4019:UTIOTI>2.0.CO;2

  • Wu Z, Sarachik ES, Battisti DS (2001) Thermally driven tropical circulations under Raleigh friction and Newtonian cooling/analytic solutions. J Atmos Sci 58:724–741

    Article  Google Scholar 

  • Xavier PPK, Marzin C, Goswami B (2007) An objective definition of the Indian summer monsoon season and a new perspective on the ENSO—monsoon relationship. Q J R Meteorol Soc 764:749–764. doi:10.1002/qj

    Article  Google Scholar 

  • Xiang B, Wang B (2013) Mechanisms for the advanced Asian summer monsoon onset since the Mid-to-Late 1990s. J Clim 26:1993–2009. doi:10.1175/JCLI-D-12-00445.1

    Article  Google Scholar 

  • Xie X, Wang B (1996) Low-frequency equatorial waves in vertically sheared zonal flows. Part II: unstable waves. J Atmos Sci 53:3589–3605

    Article  Google Scholar 

  • Yamashima R, Takata K, Matsumoto J, Yasunari T (2011) Numerical study of the impacts of land use/cover changes between 1700 and 1850 on the seasonal hydroclimate in monsoon Asia. J Meteorol Soc Jpn 89A:291–298. doi:10.2151/jmsj.2011-A19

    Article  Google Scholar 

  • Yanai M, Li C, Song Z (1992) Seasonal heating of the Tibetan plateau and its effects on the evolution of the Asian summer monsoon. J Meteorol Soc Jpn 70:319–351

    Google Scholar 

  • Yang S, Lau KM (1998) Influences of sea surface temperature and ground wetness on Asian summer monsoon. J Clim 11:3230–3246

    Article  Google Scholar 

  • Yasunari T (1980) A quasi-stationary appearance of 30–40 day period in the cloudiness fluctuations during the summer monsoon over India. J Meteorol Soc Jpn 58(3):225–229

    Google Scholar 

  • Zhang H, Liang P, Moise A, Hanson L (2012) Diagnosing potential changes in Asian summer monsoon onset and duration in IPCC AR4 model simulations using moisture and wind indices. Clim Dyn 39:2465–2486. doi:10.1007/s00382-012-1289-0

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support given by the Earth System Science Organization, Ministry of Earth Sciences, Government of India (Project No MM/SERP/CNRS/2013/INT-10/002) to conduct this research under Monsoon Mission. This work was performed using HPC resources from GENCI-IDRIS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chloé Prodhomme.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prodhomme, C., Terray, P., Masson, S. et al. Oceanic factors controlling the Indian summer monsoon onset in a coupled model. Clim Dyn 44, 977–1002 (2015). https://doi.org/10.1007/s00382-014-2200-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-014-2200-y

Keywords

Navigation