Skip to main content
Log in

The nervous and visual systems of onychophorans and tardigrades: learning about arthropod evolution from their closest relatives

  • Review
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Understanding the origin and evolution of arthropods requires examining their closest outgroups, the tardigrades (water bears) and onychophorans (velvet worms). Despite the rise of molecular techniques, the phylogenetic positions of tardigrades and onychophorans in the panarthropod tree (onychophorans + tardigrades + arthropods) remain unresolved. Hence, these methods alone are currently insufficient for clarifying the panarthropod topology. Therefore, the evolution of different morphological traits, such as one of the most intriguing features of panarthropods—their nervous system—becomes essential for shedding light on the origin and evolution of arthropods and their relatives within the Panarthropoda. In this review, we summarise current knowledge of the evolution of panarthropod nervous and visual systems. In particular, we focus on the evolution of segmental ganglia, the segmental identity of brain regions, and the visual system from morphological and developmental perspectives. In so doing, we address some of the many controversies surrounding these topics, such as the homology of the onychophoran eyes to those of arthropods as well as the segmentation of the tardigrade brain. Finally, we attempt to reconstruct the most likely state of these systems in the last common ancestors of arthropods and panarthropods based on what is currently known about tardigrades and onychophorans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Allwood J, Gleeson D, Mayer G, Daniels S, Beggs JR, Buckley TR (2010) Support for vicariant origins of the New Zealand Onychophora. J Biogeogr 37:669–681

    Article  Google Scholar 

  • Arakawa K (2016) No evidence for extensive horizontal gene transfer from the draft genome of a tardigrade. Proc Natl Acad Sci USA 113:E3057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arendt D (2003) Evolution of eyes and photoreceptor cell types. Int J Dev Biol 47:563–571

    PubMed  Google Scholar 

  • Arendt D, Wittbrodt J (2001) Reconstructing the eyes of Urbilateria. Philos Trans R Soc B Biol Sci 356:1545–1563

    Article  CAS  Google Scholar 

  • Arendt D, Hausen H, Purschke G (2009) The ‘division of labour’ model of eye evolution. Philos Trans R Soc B Biol Sci 364:2809–2817

    Article  Google Scholar 

  • Baer A, Mayer G (2012) Comparative anatomy of slime glands in Onychophora (velvet worms). J Morphol 273:1079–1088

    Article  PubMed  Google Scholar 

  • Balfour FM (1883) The anatomy and development of Peripatus capensis. Q J Microsc Sci 23:213–259

    Google Scholar 

  • Basse A (1906) Beiträge zur Kenntnis des Baues der Tardigraden. Z Wiss Zool 80:259–281

    Google Scholar 

  • Battelle B-A, Kempler KE, Saraf SR, Marten CE, Dugger DR, Speiser DI, Oakley TH (2015) Opsins in Limulus eyes: characterization of three visible light-sensitive opsins unique to and co-expressed in median eye photoreceptors and a peropsin/RGR that is expressed in all eyes. J Exp Biol 218:466–479

    Article  PubMed  PubMed Central  Google Scholar 

  • Beckmann H, Hering L, Henze MJ, Kelber A, Stevenson PA, Mayer G (2015) Spectral sensitivity in Onychophora (velvet worms) revealed by electroretinograms, phototactic behaviour and opsin gene expression. J Exp Biol 218:915–922

    Article  PubMed  Google Scholar 

  • Bemm F, Weiß CL, Schultz J, Förster F (2016) Genome of a tardigrade: horizontal gene transfer or bacterial contamination? Proc Natl Acad Sci USA 113:E3054–E3056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bitsch C, Bitsch J (2005) Evolution of eye structure and arthropod phylogeny. In: Koenemann S (ed) Crustacea and arthropod relationships. CRC Press, Taylor & Francis Book Inc., New York, pp 81–111

    Google Scholar 

  • Bitsch J, Bitsch C (2010) The tritocerebrum and the clypeolabrum in mandibulate arthropods: segmental interpretations. Acta Zool 91:249–266

    Article  Google Scholar 

  • Boothby TC, Tenlen JR, Smith FW, Wang JR, Patanella KA, Nishimura EO, Tintori SC, Li Q, Jones CD, Yandell M (2015) Evidence for extensive horizontal gene transfer from the draft genome of a tardigrade. Proc Natl Acad Sci USA 112:15976–15981

    Article  PubMed  Google Scholar 

  • Borner J, Rehm P, Schill RO, Ebersberger I, Burmester T (2014) A transcriptome approach to ecdysozoan phylogeny. Mol Phylogenet Evol 80:79–87

    Article  PubMed  Google Scholar 

  • Boyan GS, Williams JLD, Posser S, Bräunig P (2002) Morphological and molecular data argue for the labrum being non-apical, articulated, and the appendage of the intercalary segment in the locust. Arthropod Struct Dev 31:65–76

    Article  CAS  PubMed  Google Scholar 

  • Boyan GS, Bräunig P, Posser S, Williams JLD (2003) Embryonic development of the sensory innervation of the clypeo–labral complex: further support for serially homologous appendages in the locust. Arthropod Struct Dev 32:289–302

    Article  CAS  PubMed  Google Scholar 

  • Brenneis G (2016) Pycnogonida. In: Schmidt-Rhaesa A, Harzsch S, Purschke G (eds) Structure and evolution of invertebrate nervous systems. Oxford University Press, Oxford, pp 419–427

    Google Scholar 

  • Brenneis G, Richter S (2010) Architecture of the nervous system in Mystacocarida (Arthropoda, Crustacea)—an immunohistochemical study and 3D reconstruction. J Morphol 271:169–189

    PubMed  Google Scholar 

  • Brenneis G, Scholtz G (2014) The ‘ventral organs’ of Pycnogonida (Arthropoda) are neurogenic niches of late embryonic and post-embryonic nervous system development. PLoS One 9:e95435

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brenneis G, Scholtz G (2015) Serotonin-immunoreactivity in the ventral nerve cord of Pycnogonida—support for individually identifiable neurons as ancestral feature of the arthropod nervous system. BMC Evol Biol 15:136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brenneis G, Ungerer P, Scholtz G (2008) The chelifores of sea spiders (Arthropoda, Pycnogonida) are the appendages of the deutocerebral segment. Evol Dev 10:717–724

    Article  PubMed  Google Scholar 

  • Brinck P (1957) Onychophora, a review of South African species, with a discussion on the significance of the geographical distribution of the group. In: Hanström B, Brinck P, Rudebeck G (eds) South African animal life. Almqvist & Wiksell, Stockholm, pp 7–32

    Google Scholar 

  • Briscoe AD (2000) Six opsins from the butterfly Papilio glaucus: molecular phylogenetic evidence for paralogous origins of red-sensitive visual pigments in insects. J Mol Evol 51:110–121

    Article  CAS  PubMed  Google Scholar 

  • Budd GE (2002) A palaeontological solution to the arthropod head problem. Nature 417:271–275

    Article  CAS  PubMed  Google Scholar 

  • Bullock TH (2000) Revisiting the concept of identifiable neurons. Brain Behav Evol 55:236–240

    Article  CAS  PubMed  Google Scholar 

  • Calman BG, Lauerman MA, Andrews AW, Schmidt M, Battelle BA (1991) Central projections of Limulus photoreceptor cells revealed by a photoreceptor-specific monoclonal antibody. J Comp Neurol 313:553–562

    Article  CAS  PubMed  Google Scholar 

  • Campbell LI, Rota-Stabelli O, Edgecombe GD, Marchioro T, Longhorn SJ, Telford MJ, Philippe H, Rebecchi L, Peterson KJ, Pisani D (2011) MicroRNAs and phylogenomics resolve the relationships of Tardigrada and suggest that velvet worms are the sister group of Arthropoda. Proc Natl Acad Sci USA 108:15920–15924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carroll SB, Grenier JK, Weatherbee SD (2005) From DNA to diversity. Molecular genetics and the evolution of animal design. Blackwell Publishing, Malden

    Google Scholar 

  • Castano RA, Castano D, Dewel WC (1996) Arthropod head segmentation: an integrated approach. Am Zool 36:132A

    Article  Google Scholar 

  • Chen J, Waloszek D, Maas A (2004) A new “great appendage” arthropod from the Lower Cambrian of China and homology of chelicerate chelicerae and raptorial antero-ventral appendages. Lethaia 37:3–20

    Google Scholar 

  • Chipman AD, Stollewerk A (2006) Specification of neural precursor identity in the geophilomorph centipede Strigamia maritima. Dev Biol 290:337–350

    Article  CAS  PubMed  Google Scholar 

  • Cong P, Ma X, Hou X, Edgecombe GD, Strausfeld NJ (2014) Brain structure resolves the segmental affinity of anomalocaridid appendages. Nature 513:538–542

    Article  CAS  PubMed  Google Scholar 

  • Damen WGM (2002) Parasegmental organization of the spider embryo implies that the parasegment is an evolutionary conserved entity in arthropod embryogenesis. Development 129:1239–1250

    CAS  PubMed  Google Scholar 

  • Damen WGM (2007) Evolutionary conservation and divergence of the segmentation process in arthropods. Dev Dyn 236:1379–1391

    Article  CAS  PubMed  Google Scholar 

  • Damen WGM, Hausdorf M, Seyfarth EA, Tautz D (1998) A conserved mode of head segmentation in arthropods revealed by the expression pattern of Hox genes in a spider. Proc Natl Acad Sci USA 95:10665–10670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Degma P, Guidetti R (2007) Notes to the current checklist of Tardigrada. Zootaxa 1579:41–53

    Google Scholar 

  • Degma P, Bertolani R, Guidetti R (2014) Actual checklist of Tardigrada species. http://www.tardigrada.modena.unimo.it/miscellanea/Actual%20checklist%20of%20Tardigrada.pdf. Accessed 15 Dec 2016

  • Deutsch JS (2004) Segments and parasegments in arthropods: a functional perspective. BioEssays 26:1117–1125

    Article  CAS  PubMed  Google Scholar 

  • Dewel RA, Dewel WC (1996) The brain of Echiniscus viridissimus Peterfi, 1956 (Heterotardigrada): a key to understanding the phylogenetic position of tardigrades and the evolution of the arthropod head. Zool J Linn Soc 116:35–49

    Article  Google Scholar 

  • Dewel RA, Dewel WC (1997) The place of tardigrades in arthropod evolution. In: Fortey RA, Thomas RH (eds) Arthropod Relationships. Chapman & Hall, London, pp 109–123

    Google Scholar 

  • Dewel RA, Nelson DR, Dewel WC (1993) Tardigrada. In: Harrison FW, Rice ME (eds) Microscopic anatomy of invertebrates. Wiley, New York, pp 143–183

    Google Scholar 

  • Dewel RA, Budd GE, Castano DF, Dewel WC (1999) The organization of the suboesophageal nervous system in tardigrades: insights into the evolution of the arthropod hypostome and tritocerebrum. Zool Anz 238:191–203

    Google Scholar 

  • Doyère M (1840) Mémoire sur les Tardigrades. Ann Sci Nat (Paris) Zool Ser 2 14:269–361

    Google Scholar 

  • Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE, Smith SA, Seaver E, Rouse GW, Obst M, Edgecombe GD, Sørensen MV, Haddock SHD, Schmidt-Rhaesa A, Okusu A, Kristensen RM, Wheeler WC, Martindale MQ, Giribet G (2008) Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452:745–749

    Article  CAS  PubMed  Google Scholar 

  • Eakin RM, Westfall JA (1965) Fine structure of the eye of peripatus (Onychophora). Z Zellforsch Mikrosk Anat 68:278–300

    Article  CAS  PubMed  Google Scholar 

  • Edgecombe GD (2010) Arthropod phylogeny: an overview from the perspectives of morphology, molecular data and the fossil record. Arthropod Struct Dev 39:74–87

    Article  PubMed  Google Scholar 

  • Edgecombe GD, Ma X, Strausfeld NJ (2015) Unlocking the early fossil record of the arthropod central nervous system. Philos Trans R Soc B Biol Sci 370:20150038

    Article  Google Scholar 

  • Eibye-Jacobsen J (1996/1997) New observations on the embryology of the Tardigrada. Zool Anz 235:201–216

  • Eriksson BJ, Budd GE (2000) Onychophoran cephalic nerves and their bearing on our understanding of head segmentation and stem-group evolution of Arthropoda. Arthropod Struct Dev 29:197–209

    Article  CAS  PubMed  Google Scholar 

  • Eriksson BJ, Stollewerk A (2010a) The morphological and molecular processes of onychophoran brain development show unique features that are neither comparable to insects nor to chelicerates. Arthropod Struct Dev 39:478–490

    Article  CAS  PubMed  Google Scholar 

  • Eriksson BJ, Stollewerk A (2010b) Expression patterns of neural genes in Euperipatoides kanangrensis suggest divergent evolution of onychophoran and euarthropod neurogenesis. Proc Natl Acad Sci USA 107:22576–22581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eriksson BJ, Tait NN, Budd GE (2003) Head development in the onychophoran Euperipatoides kanangrensis with particular reference to the central nervous system. J Morphol 255:1–23

    Article  PubMed  Google Scholar 

  • Eriksson BJ, Larson ET, Thörnqvist P-O, Tait NN, Budd GE (2005a) Expression of engrailed in the developing brain and appendages of the onychophoran Euperipatoides kanangrensis (Reid). J Exp Zool Part B Mol Dev Evol 304B:1–9

    Article  CAS  Google Scholar 

  • Eriksson BJ, Tait NN, Norman JM, Budd GE (2005b) An ultrastructural investigation of the hypocerebral organ of the adult Euperipatoides kanangrensis (Onychophora, Peripatopsidae). Arthropod Struct Dev 34:407–418

    Article  Google Scholar 

  • Eriksson BJ, Tait NN, Budd GE, Janssen R, Akam M (2010) Head patterning and Hox gene expression in an onychophoran and its implications for the arthropod head problem. Dev Gene Evol 220:117–122

    Article  Google Scholar 

  • Eriksson BJ, Samadi L, Schmid A (2013a) The expression pattern of the genes engrailed, pax6, otd and six3 with special respect to head and eye development in Euperipatoides kanangrensis Reid 1996 (Onychophora: Peripatopsidae). Dev Gene Evol 223:237–246

    Article  Google Scholar 

  • Eriksson BJ, Fredman D, Steiner G, Schmid A (2013b) Characterisation and localisation of the opsin protein repertoire in the brain and retinas of a spider and an onychophoran. BMC Evol Biol 13:186

    Article  PubMed  PubMed Central  Google Scholar 

  • Evans R (1901) On two new species of Onychophora from the Siamese Malay States. Q J Microsc Sci 44:473–538

    Google Scholar 

  • Fedorow B (1929) Zur Anatomie des Nervensystems von Peripatus. II. Das Nervensystem des vorderen Körperendes und seine Metamerie. Zool Jahrb Abt Anat Ontog Tiere 50:279–332

    Google Scholar 

  • Fernandez C, Vasanthan T, Kissoon N, Karam G, Duquette N, Seymour C, Stone J (2016) Radiation tolerance and bystander effects in the eutardigrade species Hypsibius dujardini (Parachaela: Hypsibiidae). Zool J Linn Soc 178:919–923

    Article  Google Scholar 

  • Feuda R, Hamilton SC, McInerney JO, Pisani D (2012) Metazoan opsin evolution reveals a simple route to animal vision. Proc Natl Acad Sci USA 109:18868–18872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fortey RA, Thomas RH (1998) Arthropod relationships. Chapman & Hall, London

    Book  Google Scholar 

  • Franke FA, Mayer G (2014) Controversies surrounding segments and parasegments in Onychophora: insights from the expression patterns of four “segment polarity genes” in the peripatopsid Euperipatoides rowelli. PLoS One 9:e114383

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Frase T, Richter S (2013) The fate of the onychophoran antenna. Dev Gene Evol 223:247–251

    Article  Google Scholar 

  • Frase T, Richter S (2016) Nervous system development in the fairy shrimp Branchinella sp. (Crustacea: Branchiopoda: Anostraca): insights into the development and evolution of the branchiopod brain and its sensory organs. J Morphol 277:1423–1446

    Article  PubMed  Google Scholar 

  • Gabriel WN, McNuff R, Patel SK, Gregory TR, Jeck WR, Jones CD, Goldstein B (2007) The tardigrade Hypsibius dujardini, a new model for studying the evolution of development. Dev Biol 312:545–559

    Article  CAS  PubMed  Google Scholar 

  • Gaffron E (1884) Kurzer Bericht über fortgesetze Peripatus-Studien. Zool Anz 7:336–339

    Google Scholar 

  • Geidies H (1954) Abgeänderte Azan − Methoden. Mikrokosmos 42:239–240

    Google Scholar 

  • Greeff R (1865) Ueber das Nervensystem der Bärthierchen, Arctiscoida C.A.S. Schultze (Tardigraden Doyère) mit besonderer Berücksichtigung der Muskelnerven und deren Endigungen. Arch mikrosk Anat 1:101–123

    Article  Google Scholar 

  • Greven H (2007) Comments on the eyes of tardigrades. Arthropod Struct Dev 36:401–407

    Article  PubMed  Google Scholar 

  • Greven H, Kuhlmann D (1972) Die Struktur des Nervengewebes von Macrobiotus hufelandi C.A.S. Schultze (Tardigrada). Z Zellforsch 132:131–146

    Article  CAS  PubMed  Google Scholar 

  • Gross V, Mayer G (2015) Neural development in the tardigrade Hypsibius dujardini based on anti-acetylated α-tubulin immunolabeling. EvoDevo 6:12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gross V, Treffkorn S, Mayer G (2015) Tardigrada. In: Wanninger A (ed) Evolutionary developmental biology of invertebrates. Springer, Berlin, pp 35–52

    Chapter  Google Scholar 

  • Guidetti R, Bertolani R (2005) Tardigrade taxonomy: an updated check list of the taxa and a list of characters for their identification. Zootaxa 845:1–46

    Article  Google Scholar 

  • Guilding L (1826) Mollusca caribbaeana. Zool J 2:437–449

    Google Scholar 

  • Halberg KA, Jørgensen A, Møbjerg N (2013) Desiccation tolerance in the tardigrade Richtersius coronifer relies on muscle mediated structural reorganization. PLoS One 8:e85091

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hanström B (1928) Onychophora. Vergleichende Anatomie des Nervensystems der Wirbellosen Tiere unter Berücksichtigung seiner Funktion. Springer, Berlin, pp 341–351

  • Hanström B (1935) Bemerkungen über das Gehirn und die Sinnesorgane der Onychophoren. Lund Univ Årsskr 31:1–37

    Google Scholar 

  • Harrison PJ, Macmillan DL, Young HM (1995) Serotonin immunoreactivity in the ventral nerve cord of the primitive crustacean Anaspides tasmaniae closely resembles that of crayfish. J Exp Biol 198:531–535

    CAS  PubMed  Google Scholar 

  • Harzsch S (2003) Evolution of identified arthropod neurons: the serotonergic system in relation to engrailed-expressing cells in the embryonic ventral nerve cord of the American lobster Homarus americanus Milne Edwards, 1873 (Malacostraca, Pleocyemata, Homarida). Dev Biol 258:44–56

    Article  CAS  PubMed  Google Scholar 

  • Harzsch S (2004a) Phylogenetic comparison of serotonin-immunoreactive neurons in representatives of the Chilopoda, Diplopoda, and Chelicerata: implications for arthropod relationships. J Morphol 259:198–213

    Article  CAS  PubMed  Google Scholar 

  • Harzsch S (2004b) The tritocerebrum of Euarthropoda: a “non-drosophilocentric” perspective. Evol Dev 6:303–309

    Article  PubMed  Google Scholar 

  • Harzsch S (2006) Neurophylogeny: architecture of the nervous system and a fresh view on arthropod phyologeny. Integr Comp Biol 46:162–194

    Article  PubMed  Google Scholar 

  • Harzsch S, Waloszek D (2000) Serotonin-immunoreactive neurons in the ventral nerve cord of Crustacea: a character to study aspects of arthropod phylogeny. Arthropod Struct Dev 29:307–322

    Article  CAS  PubMed  Google Scholar 

  • Harzsch S, Wildt M, Battelle B, Waloszek D (2005) Immunohistochemical localization of neurotransmitters in the nervous system of larval Limulus polyphemus (Chelicerata, Xiphosura): evidence for a conserved protocerebral architecture in Euarthropoda. Arthropod Struct Dev 34:327–342

    Article  CAS  Google Scholar 

  • Harzsch S, Sandeman D, Chaigneau J (2006) Morphology and development of the central nervous system. Koninklijke Brill Academic Publishers, Leiden, pp 1–84

    Google Scholar 

  • Hashimoto T, Horikawa DD, Saito Y, Kuwahara H, Kozuka-Hata H, Shin-I T, Minakuchi Y, Ohishi K, Motoyama A, Aizu T, Enomoto A, Kondo K, Tanaka S, Hara Y, Koshikawa S, Sagara H, Miura T, Yokobori S, Miyagawa K, Suzuki Y, Kubo T, Oyama M, Kohara Y, Fujiyama A, Arakawa K, Katayama T, Toyoda A, Kunieda T (2016) Extremotolerant tardigrade genome and improved radiotolerance of human cultured cells by tardigrade-unique protein. Nat Commun 7:12808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haug JT, Waloszek D, Maas A, Liu Y, Haug C (2012) Functional morphology, ontogeny and evolution of mantis shrimp-like predators in the Cambrian. Palaeontology 55:369–399

    Article  Google Scholar 

  • Heidemann NW, Smith DK, Hygum TL, Stapane L, Clausen LK, Jørgensen A, Hélix-Nielsen C, Møbjerg N (2016) Osmotic stress tolerance in semi-terrestrial tardigrades. Zool J Linn Soc 178:912–918

    Article  Google Scholar 

  • Heidenhain M (1915) Über die mallorysche Bindegewebsfärbung mit Karmin und Azokarmin als Vorfarben. Z Wiss Mikrosk 33:361–372

    Google Scholar 

  • Hejnol A, Lowe CJ (2015) Embracing the comparative approach: how robust phylogenies and broader developmental sampling impacts the understanding of nervous system evolution. Philos Trans R Soc B Biol Sci 370:20150045

    Article  Google Scholar 

  • Hejnol A, Schnabel R (2005) The eutardigrade Thulinia stephaniae has an indeterminate development and the potential to regulate early blastomere ablations. Development 132:1349–1361

    Article  CAS  PubMed  Google Scholar 

  • Hejnol A, Obst M, Stamatakis A, Ott M, Rouse GW, Edgecombe GD, Martinez P, Baguñà J, Bailly X, Jondelius U, Wiens M, Müller WEG, Seaver E, Wheeler WC, Martindale MQ, Giribet G, Dunn CW (2009) Assessing the root of bilaterian animals with scalable phylogenomic methods. Proc R Soc B Biol Sci 276:4261–4270

    Article  Google Scholar 

  • Hengherr S, Heyer AG, Köhler HR, Schill RO (2008) Trehalose and anhydrobiosis in tardigrades—evidence for divergence in responses to dehydration. FEBS J 275:281–288

    Article  CAS  PubMed  Google Scholar 

  • Henry LM (1948) The nervous system and the segmentation of the head in the Annulata. Microentomology 13:27–48

    CAS  PubMed  Google Scholar 

  • Henze MJ, Oakley TH (2015) The dynamic evolutionary history of pancrustacean eyes and opsins. Integr Comp Biol 55:830–842

    Article  PubMed  Google Scholar 

  • Hering L, Mayer G (2014) Analysis of the opsin repertoire in the tardigrade Hypsibius dujardini provides insights into the evolution of opsin genes in Panarthropoda. Genome Biol Evol 6:2380–2391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hering L, Henze MJ, Kohler M, Kelber A, Bleidorn C, Leschke M, Nickel B, Meyer M, Kircher M, Sunnucks P, Mayer G (2012) Opsins in Onychophora (velvet worms) suggest a single origin and subsequent diversification of visual pigments in arthropods. Mol Biol Evol 29:3451–3458

    Article  CAS  PubMed  Google Scholar 

  • Hering L, Bouameur J-E, Reichelt J, Magin TM, Mayer G (2016) Novel origin of lamin-derived cytoplasmic intermediate filaments in tardigrades. eLife 5:e11117

    Article  PubMed  PubMed Central  Google Scholar 

  • Hermans CO, Eakin RM (1974) Fine structure of the eyes of an alciopid polychaete, Vanadis tagensis (Annelida). Z Morphol Tiere 79:245–267

    Google Scholar 

  • Heymons R (1901) Die Entwicklungsgeschichte der Scolopender. Zoologica 33:1–244

    Google Scholar 

  • Hochberg R, Litvaitis MK (2003) Ultrastructural and immunocytochemical observations of the nervous systems of three macrodasyidan gastrotrichs. Acta Zool 84:171–178

    Article  Google Scholar 

  • Holmgren NF (1916) Zur vergleichenden Anatomie des Gehirns von Polychaeten, Onychophoren, Xiphosuren, Arachniden, Crustaceen, Myriapoden, und Insekten. Vorstudien zu einer Phylogenie der Arthropoden. Kungl Svenska Vetenskapsakad Handlingar [Ser 2] 56:1–303

  • Homberg U (2008) Evolution of the central complex in the arthropod brain with respect to the visual system. Arthropod Struct Dev 37:347–362

    Article  PubMed  Google Scholar 

  • Hou XG, Ma XY, Zhao J, Bergström J (2004) The lobopodian Paucipodia inermis from the Lower Cambrian Chengjiang fauna, Yunnan, China. Lethaia 37:235–244

    Article  Google Scholar 

  • Hoyle G (1983) On the way to neuroethology: the identified neuron approach. Neuroethology and behavioral physiology. Springer, New York, pp 9–25

    Book  Google Scholar 

  • Ingham P, Martinez Arias A (1992) Boundaries and fields in early embryos. Cell 68:221–235

    Article  CAS  PubMed  Google Scholar 

  • Janssen R (2017) Comparative analysis of gene expression patterns in the arthropod labrum and the onychophoran frontal appendages, and its implications for the arthropod head problem. EvoDevo 8:1

    Article  PubMed  PubMed Central  Google Scholar 

  • Jönsson KI (2001) The nature of selection on anhydrobiotic capacity in tardigrades. Zool Anz 240:409–417

    Article  Google Scholar 

  • Kashiyama K, Seki T, Numata H, Goto SG (2009) Molecular characterization of visual pigments in Branchiopoda and the evolution of opsins in Arthropoda. Mol Biol Evol 26:299–311

    Article  CAS  PubMed  Google Scholar 

  • Katti C, Kempler K, Porter ML, Legg A, Gonzalez R, Garcia-Rivera E, Dugger D, Battelle B-A (2010) Opsin co-expression in Limulus photoreceptors: differential regulation by light and a circadian clock. J Exp Biol 213:2589–2601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimm MA, Prpic NM (2006) Formation of the arthropod labrum by fusion of paired and rotated limb-bud-like primordia. Zoomorphology 125:147–155

    Article  Google Scholar 

  • Kinchin IM (1994) The biology of Tardigrades. Portland Press Inc., London

    Google Scholar 

  • Kirsch R, Richter S (2007) The nervous system of Leptodora kindtii (Branchiopoda, Cladocera) surveyed with Confocal Scanning Microscopy (CLSM), including general remarks on the branchiopod neuromorphological ground pattern. Arthropod Struct Dev 36:143–156

    Article  PubMed  Google Scholar 

  • Kotikova EA (1995) Localization and neuroanatomy of catecholaminergic neurons in some rotifer species. Hydrobiologia 313(314):123–127

    Article  Google Scholar 

  • Koutsovoulos G, Kumar S, Laetsch DR, Stevens L, Daub J, Conlon C, Maroon H, Thomas F, Aboobaker AA, Blaxter M (2016) No evidence for extensive horizontal gene transfer in the genome of the tardigrade Hypsibius dujardini. Proc Natl Acad Sci USA 113:5053–5058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koyanagi M, Nagata T, Katoh K, Yamashita S, Tokunaga F (2008) Molecular evolution of arthropod color vision deduced from multiple opsin genes of jumping spiders. J Mol Evol 66:130–137

    Article  CAS  PubMed  Google Scholar 

  • Kristensen RM (1978) Notes on marine Heterotardigrades l. Description of two new Batillipes species, using the electron microscope. Zool Anz 200:1–17

    Google Scholar 

  • Kristensen RM (1983) The first record of cyclomorphosis in Tardigrada based on a new genus and species from Arctic meiobenthos. Z Zool Syst Evolutionsforsch 20:249–270

    Article  Google Scholar 

  • Kutsch W, Breidbach O (1994) Homologues structures in the nervous system of Arthropoda. Adv Insect Physiol 24:1–113

    Article  Google Scholar 

  • Land MF, Nilsson D-E (2012) Animal eyes. Oxford University Press, Oxford

    Book  Google Scholar 

  • Legg DA, Vannier J (2013) The affinities of the cosmopolitan arthropod Isoxys and its implications for the origin of arthropods. Lethaia 46:540–550

    Article  Google Scholar 

  • Legg DA, Sutton MD, Edgecombe GD, Caron J-B (2012) Cambrian bivalved arthropod reveals origin of arthrodization. Proc R Soc B Biol Sci 279:4699–4704

    Article  Google Scholar 

  • Legg DA, Sutton MD, Edgecombe GD (2013) Arthropod fossil data increase congruence of morphological and molecular phylogenies. Nat Commun 4:2485

    Article  PubMed  CAS  Google Scholar 

  • Lehmann T, Heß M, Melzer RR (2012) Wiring a periscope—ocelli, retinula axons, visual neuropils and the ancestrality of sea spiders. PLoS One 7:e30474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Shu D, Han J, Zhang Z (2004) A rare lobopod with well-preserved eyes from Chengjiang Lagerstätte and its implications for origin of arthropods. Chin Sci Bull 49:1063–1071

    Article  Google Scholar 

  • Loesel R, Wolf H, Kenning M, Harzsch S, Sombke A (2013) Architectural principles and evolution of the arthropod central nervous system. In: Minelli A, Boxshall G, Fusco G (eds) Arthropod biology and evolution—molecules, development, morphology. Springer, Heidelberg, pp 299–342

    Chapter  Google Scholar 

  • Mallatt J, Giribet G (2006) Further use of nearly complete 28S and 18S rRNA genes to classify Ecdysozoa: 37 more arthropods and a kinorhynch. Mol Biol Evol 40:772–794

    CAS  Google Scholar 

  • Mallatt JM, Garey JR, Shultz JW (2004) Ecdysozoan phylogeny and Bayesian inference: first use of nearly complete 28S and 18S rRNA gene sequences to classify the arthropods and their kin. Mol Phylogenet Evol 31:178–191

    Article  CAS  PubMed  Google Scholar 

  • Marcus E (1929) Tardigrada. In: Bronn HG (ed) Klassen und Ordnungen des Tierreichs. Akademische Verlagsgesellschaft, Leipzig, pp 1–609

    Google Scholar 

  • Martin C, Mayer G (2014) Neuronal tracing of oral nerves in a velvet worm—implications for the evolution of the ecdysozoan brain. Front Neuroanat 8(7):1–13

    Google Scholar 

  • Martin C, Mayer G (2015) Insights into the segmental identity of post-oral commissures and pharyngeal nerves in Onychophora based on retrograde fills. BMC Neurosci 16:53

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin C, Gross V, Pflüger H-J, Stevenson PA, Mayer G (2017) Assessing segmental versus non-segmental features in the ventral nervous system of onychophorans (velvet worms). BMC Evol Biol 17:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Mayer G (2006) Structure and development of onychophoran eyes—what is the ancestral visual organ in arthropods? Arthropod Struct Dev 35:231–245

    Article  PubMed  Google Scholar 

  • Mayer G (2016) Onychophora. In: Schmidt-Rhaesa A, Harzsch S, Purschke G (eds) Structure and evolution of invertebrate nervous systems. Oxford University Press, Oxford, pp 390–401

    Google Scholar 

  • Mayer G, Harzsch S (2007) Immunolocalization of serotonin in Onychophora argues against segmental ganglia being an ancestral feature of arthropods. BMC Evol Biol 7:118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mayer G, Harzsch S (2008) Distribution of serotonin in the trunk of Metaperipatus blainvillei (Onychophora, Peripatopsidae): implications for the evolution of the nervous system in Arthropoda. J Comp Neurol 507:1196–1208

    Article  PubMed  Google Scholar 

  • Mayer G, Koch M (2005) Ultrastructure and fate of the nephridial anlagen in the antennal segment of Epiperipatus biolleyi (Onychophora, Peripatidae)—evidence for the onychophoran antennae being modified legs. Arthropod Struct Dev 34:471–480

    Article  Google Scholar 

  • Mayer G, Oliveira IS (2011) Phylum Onychophora Grube, 1853. In: Zhang Z-Q (ed) Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness. Zootaxa 3148:98

  • Mayer G, Oliveira IS (2013) Phylum Onychophora Grube, 1853. In: Zhang Z-Q (ed) Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness (Addenda 2013). Zootaxa 3703:15–16

  • Mayer G, Whitington PM (2008) Insights into neural anatomy and development in Onychophora. J Morphol 269:1463–1464

    Google Scholar 

  • Mayer G, Whitington PM (2009a) Neural development in Onychophora (velvet worms) suggests a step-wise evolution of segmentation in the nervous system of Panarthropoda. Dev Biol 335:263–275

    Article  CAS  PubMed  Google Scholar 

  • Mayer G, Whitington PM (2009b) Velvet worm development links myriapods with chelicerates. Proc R Soc B Biol Sci 276:3571–3579

    Article  Google Scholar 

  • Mayer G, Bartolomaeus T, Ruhberg H (2005) Ultrastructure of mesoderm in embryos of Opisthopatus roseus (Onychophora, Peripatopsidae): revision of the “long germ band” hypothesis for Opisthopatus. J Morphol 263:60–70

    Article  PubMed  Google Scholar 

  • Mayer G, Whitington PM, Sunnucks P, Pflüger H-J (2010) A revision of brain composition in Onychophora (velvet worms) suggests that the tritocerebrum evolved in arthropods. BMC Evol Biol 10:255

    Article  PubMed  PubMed Central  Google Scholar 

  • Mayer G, Martin C, Rüdiger J, Kauschke S, Stevenson PA, Poprawa I, Hohberg K, Schill RO, Pflüger H-J, Schlegel M (2013a) Selective neuronal staining in tardigrades and onychophorans provides insights into the evolution of segmental ganglia in panarthropods. BMC Evol Biol 13:230

    Article  PubMed  PubMed Central  Google Scholar 

  • Mayer G, Kauschke S, Rüdiger J, Stevenson PA (2013b) Neural markers reveal a one-segmented head in tardigrades (water bears). PLoS One 8:e59090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayer G, Martin C, de Sena OI, Franke FA, Gross V (2014) Latest anomalocaridid affinities challenged. Nature 516:E1–E2

    Article  CAS  PubMed  Google Scholar 

  • Mayer G, Oliveira IS, Baer A, Hammel JU, Gallant J, Hochberg R (2015a) Capture of prey, feeding, and functional anatomy of the jaws in velvet worms (Onychophora). Integr Comp Biol 55:217–227

    Article  PubMed  Google Scholar 

  • Mayer G, Hering L, Stosch JM, Stevenson PA, Dircksen H (2015b) Evolution of pigment-dispersing factor neuropeptides in Panarthropoda: insights from Onychophora (velvet worms) and Tardigrada (water bears). J Comp Neurol 523:1865–1885

    Article  CAS  PubMed  Google Scholar 

  • Mayer G, Franke FA, Treffkorn S, Oliveira I (2015c) Onychophora. In: Wanninger A (ed) Evolutionary developmental biology of invertebrates. Springer, Berlin, pp 53–98

    Chapter  Google Scholar 

  • Minelli A, Boxshall G, Fusco G (2013) Arthropod biology and evolution: molecules, development, morphology. Springer Science & Business Media

  • Mittmann B, Scholtz G (2003) Development of the nervous system in the “head” of Limulus polyphemus (Chelicerata: Xiphosura): morphological evidence for a correspondence between the segments of the chelicerae and of the (first) antennae of Mandibulata. Dev Gene Evol 213:9–17

    Google Scholar 

  • Mittmann B, Wolff C (2012) Embryonic development and staging of the cobweb spider Parasteatoda tepidariorum C. L. Koch, 1841 (syn.: Achaearanea tepidariorum; Araneomorphae; Theridiidae). Dev Gene Evol 222:189–216

    Article  Google Scholar 

  • Mizunami M, Iwasaki M, Okada R, Nishikawa M (1998) Topography of four classes of Kenyon cells in the mushroom bodies of the cockroach. J Comp Neurol 399:162–175

    Article  CAS  PubMed  Google Scholar 

  • Møbjerg N, Halberg KA, Jørgensen A, Persson D, Bjørn M, Ramløv H, Kristensen RM (2011) Survival in extreme environments—on the current knowledge of adaptations in tardigrades. Acta Physiol 202:409–420

    Article  CAS  Google Scholar 

  • Müller MCM, Westheide W (2002) Comparative analysis of the nervous systems in presumptive progenetic dinophilid and dorvilleid polychaetes (Annelida) by immunohistochemistry and cLSM. Acta Zool 83:33–48

    Article  Google Scholar 

  • Murienne J, Daniels SR, Buckley TR, Mayer G, Giribet G (2014) A living fossil tale of Pangean biogeography. Proc R Soc B Biol Sci 281:1471–2954

    Google Scholar 

  • Nelson DR, Guidetti R, Rebecchi L (2015) Phylum Tardigrada. In: Thorp J, Rogers DC (eds) Ecology and general biology: Thorp and Covich’s freshwater invertebrates. Academic Press, Cambridge, pp 347–380

    Chapter  Google Scholar 

  • Nielsen C (2012) Animal evolution: interrelationships of the living phyla. Oxford University Press, Oxford

    Google Scholar 

  • Nilsson D-E (2013) Eye evolution and its functional basis. Vis Neurosci 30:5–20

    Article  PubMed  PubMed Central  Google Scholar 

  • Niven JE, Farris SM (2012) Miniaturization of nervous systems and neurons. Curr Biol 22:R323–R329

    Article  CAS  PubMed  Google Scholar 

  • Northcutt RG (2012) Evolution of centralized nervous systems: two schools of evolutionary thought. Proc Natl Acad Sci USA 109:10626–10633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliveira IS, Mayer G (2013) Apodemes associated with limbs support serial homology of claws and jaws in Onychophora (velvet worms). J Morphol 274:1180–1190

    Article  Google Scholar 

  • Oliveira IS, Lacorte GA, Fonseca CG, Wieloch AH, Mayer G (2011) Cryptic speciation in Brazilian Epiperipatus (Onychophora: Peripatidae) reveals an underestimated diversity among the peripatid velvet worms. PLoS One 6:e19973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliveira IS, Franke FA, Hering L, Schaffer S, Rowell DM, Weck-Heimann A, Monge-Nájera J, Morera-Brenes B, Mayer G (2012) Unexplored character diversity in Onychophora (velvet worms): a comparative study of three peripatid species. PLoS One 7:e51220

    Article  CAS  PubMed Central  Google Scholar 

  • Oliveira IS, Tait NN, Strübing I, Mayer G (2013) The role of ventral and preventral organs as attachment sites for segmental limb muscles in Onychophora. Front Zool 10:73

    Article  Google Scholar 

  • Oliveira IS, Bai M, Jahn H, Gross V, Martin C, Hammel JU, Zhang W, Mayer G (2016) Earliest onychophoran in amber reveals Gondwanan migration patterns. Curr Biol 26:2594–2601

    Article  CAS  PubMed  Google Scholar 

  • Ortega-Hernández J, Budd GE (2016) The nature of non-appendicular anterior paired projections in Palaeozoic total-group Euarthropoda. Arthropod Struct Dev 45:185–199

    Article  PubMed  Google Scholar 

  • Ortega-Hernández J, Janssen R, Budd GE (2017) Origin and evolution of the panarthropod head–A palaeobiological and developmental perspective. Arthropod Struct Dev 46:354–379

    Article  PubMed  Google Scholar 

  • Osorio D, Averof M, Bacon JP (1995) Arthropod evolution: great brains, beautiful bodies. Trends Ecol Evol 10:449–454

    Article  CAS  PubMed  Google Scholar 

  • Ou Q, Shu D, Mayer G (2012) Cambrian lobopodians and extant onychophorans provide new insights into early cephalization in Panarthropoda. Nat Commun 3:1261

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Paterson JR, García-Bellido DC, Lee MSY, Brock GA, Jago JB, Edgecombe GD (2011) Acute vision in the giant Cambrian predator Anomalocaris and the origin of compound eyes. Nature 480:237–240

    Article  CAS  PubMed  Google Scholar 

  • Paulus HF (1979) Eye structure and the monophyly of the Arthropoda. In: Gupta AP (ed) Arthropod phylogeny. Van Nostrand Reinhold Company, New York, pp 299–383

    Google Scholar 

  • Paulus HF (2000) Phylogeny of the Myriapoda–Crustacea–Insecta: a new attempt using photoreceptor structure. J Zool Syst Evol Res 38:189–208

    Article  Google Scholar 

  • Persson DK, Halberg KA, Jørgensen A, Møbjerg N, Kristensen RM (2012) Neuroanatomy of Halobiotus crispae (Eutardigrada: Hypsibiidae): tardigrade brain structure supports the clade Panarthropoda. J Morphol 273:1227–1245

    Article  PubMed  Google Scholar 

  • Persson DK, Halberg KA, Jørgensen A, Møbjerg N, Kristensen RM (2014) Brain anatomy of the marine tardigrade Actinarctus doryphorus (Arthrotardigrada). J Morphol 275:173–190

    Article  PubMed  Google Scholar 

  • Petrof I, Sherman SM (2013) Functional significance of synaptic terminal size in glutamatergic sensory pathways in thalamus and cortex. J Physiol 591:3125–3131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pflüger HJ, Stevenson PA (2005) Evolutionary aspects of octopaminergic systems with emphasis on arthropods. Arthropod Struct Dev 34:379–396

    Article  CAS  Google Scholar 

  • Pflugfelder O (1948) Entwicklung von Paraperipatus amboinensis n. sp. Zool Jahrb Abt Anat Ontog Tiere 69:443–492

    Google Scholar 

  • Plachetzki DC, Degnan BM, Oakley TH (2007) The origins of novel protein interactions during animal opsin evolution. PLoS One 2(10):e1054

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Poinar G (2000) Fossil onychophorans from Dominican and Baltic amber: Tertiapatus dominicanus n.g., n.sp. (Tertiapatidae n.fam.) and Succinipatopsis balticus n.g., n.sp. (Succinipatopsidae n.fam.) with a proposed classification of the subphylum Onychophora. Invertebr Biol 119:104–109

    Article  Google Scholar 

  • Porter ML, Cronin TW, McClellan DA, Crandall KA (2007) Molecular characterization of crustacean visual pigments and the evolution of pancrustacean opsins. Mol Biol Evol 24:253–268

    Article  CAS  PubMed  Google Scholar 

  • Porter ML, Blasic JR, Bok MJ, Cameron EG, Pringle T, Cronin TW, Robinson PR (2012) Shedding new light on opsin evolution. Proc R Soc B 279:3–14

    Article  PubMed  Google Scholar 

  • Prpic N-M, Wigand B, Damen WG, Klingler M (2001) Expression of dachshund in wild-type and Distal-less mutant Tribolium corroborates serial homologies in insect appendages. Dev Gene Evol 211:467–477

    Article  CAS  Google Scholar 

  • Purschke G (2016) Annelida: basal groups and Pleistoannelida. In: Schmidt-Rhaesa A, Harzsch S, Purschke G (eds) Structure and evolution of invertebrate nervous systems. Oxford Univesity Press, Oxford, pp 254–312

    Google Scholar 

  • Ramirez MD, Pairett AN, Pankey MS, Serb JM, Speiser DI, Swafford AJ, Oakley TH (2016) The last common ancestor of most bilaterian animals possessed at least nine opsins. Genome Biol Evol 8:3640–3652

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ramløv H, Westh P (2001) Cryptobiosis in the eutardigrade Adorybiotus (Richtersius) coronifer: tolerance to alcohols, temperature and de novo protein synthesis. Zool Anz 240:517–523

    Article  Google Scholar 

  • Rebecchi L, Altiero T, Cesari M, Bertolani R, Rizzo AM, Corsetto PA, Guidetti R (2011) Resistance of the anhydrobiotic eutardigrade Paramacrobiotus richtersi to space flight (LIFE–TARSE mission on FOTON-M3). J Zool Syst Evol Res 49(Suppl. 1):98–103

    Article  Google Scholar 

  • Rehm P, Borner J, Meusemann K, von Reumont BM, Simon S, Hadrys H, Misof B, Burmester T (2011) Dating the arthropod tree based on large-scale transcriptome data. Mol Phylogenet Evol 61:880–887

    Article  PubMed  Google Scholar 

  • Reisinger E (1925) Untersuchungen am Nervensystem der Bothrioplana semperi Braun. (Zugleich ein Beitrag zur Technik der vitalen Nervenfärbung und zur vergleichenden Anatomie des Plathelminthennervensystems.). Z Morph Ökol Tiere 5:119–149

    Article  Google Scholar 

  • Reisinger E (1972) Die evolution des Orthogons der Spiralier und das Archicölomatenproblem. Z Zool Syst Evolutionsforsch 10:1–43

    Article  Google Scholar 

  • Reuter M, Mäntylä K, Gustafsson MKS (1998) Organization of the orthogon—main and minor nerve cords. Hydrobiologia 383:175–182

    Article  Google Scholar 

  • Richter S, Loesel R, Purschke G, Schmidt-Rhaesa A, Scholtz G, Stach T, Vogt L, Wanninger A, Brenneis G, Döring C, Faller S, Fritsch M, Grobe P, Heuer CM, Kaul S, Møller OS, Müller CHG, Rieger V, Rothe BH, Stegner MEJ, Harzsch S (2010) Invertebrate neurophylogeny: suggested terms and definitions for a neuroanatomical glossary. Front Zool 7:29

    Article  PubMed  PubMed Central  Google Scholar 

  • Richter S, Stein M, Frase T, Szucsich NU (2013) The arthropod head. In: Minelli A, Boxshall G, Fusco G (eds) Arthropod biology and evolution. Springer, Heidelberg, pp 223–240

    Chapter  Google Scholar 

  • Rogers BT, Kaufman TC (1997) Structure of the insect head in ontogeny and phylogeny: a view from Drosophila. Int Rev Cytol 174:1–84

    Article  CAS  PubMed  Google Scholar 

  • Rota-Stabelli O, Kayal E, Gleeson D, Daub J, Boore J, Telford M, Pisani D, Blaxter M, Lavrov D (2010) Ecdysozoan mitogenomics: evidence for a common origin of the legged invertebrates, the Panarthropoda. Genome Biol Evol 2:425–440

    Article  PubMed  PubMed Central  Google Scholar 

  • Rota-Stabelli O, Daley AC, Pisani D (2013) Molecular timetrees reveal a Cambrian colonization of land and a new scenario for ecdysozoan evolution. Curr Biol 23:1–7

    Article  CAS  Google Scholar 

  • Rothe BH, Schmidt-Rhaesa A (2010) Structure of the nervous system in Tubiluchus troglodytes (Priapulida). Invertebr Biol 129:39–58

    Article  Google Scholar 

  • Ruhberg H, Mayer G (2013) Onychophora, Stummelfüßer. In: Westheide W, Rieger G (eds) Spezielle Zoologie Teil 1: Einzeller und Wirbellose Tiere. Springer, Berlin, pp 457–464

    Google Scholar 

  • Ruhberg H, Tiemann H, Mette A, Rhode B (2001) Evolutionäre Aspekte der Augen-Rückbildung beim hemiedaphischen Onychophoren Tasmanipatus anophthalmus Ruhberg et al., 1991 (Peripatopsidae). Mitt Hambg Zool Mus Inst 98:31–50

    Google Scholar 

  • Sanchez S (1958) Cellules neurosécrétrices et organes infracérébraux de Peripatopsis moseleyi Wood (Onychophores) et neurosécrétion chez Nymphon gracile Leach (Pycnogonides). Arch Zool Exp Gene Notes Rev 96:57–62

    Google Scholar 

  • Schmidt-Rhaesa A (2001) Tardigrades—Are they really miniaturized dwarfs? Zool Anz 240:549–555

    Article  Google Scholar 

  • Schmidt-Rhaesa A (2007) The evolution of organ systems. Oxford University Press, Oxford

    Book  Google Scholar 

  • Schmidt-Rhaesa A, Henne S (2016) Cycloneuralia (Nematoda, Nematomorpha, Priapulida, Kinorhyncha, Loricifera). In: Schmidt-Rhaesa A, Harzsch S, Purschke G (eds) Structure and evolution of invertebrate nervous systems. Oxford University Press, Oxford, pp 368–381

    Google Scholar 

  • Schmidt-Rhaesa A, Harzsch S, Purschke G (2016) Structure and evolution of invertebrate nervous systems. Oxford University Press, Oxford

    Google Scholar 

  • Schoenemann B, Liu JN, Shu DG, Han J, Zhang ZF (2009) A miniscule optimized visual system in the lower Cambrian. Lethaia 42:265–273

    Article  Google Scholar 

  • Schokraie E, Hotz-Wagenblatt A, Warnken U, Frohme M, Dandekar T, Schill RO, Schnölzer M (2011) Investigating heat shock proteins of tardigrades in active versus anhydrobiotic state using shotgun proteomics. J Zool Syst Evol Res 49(Suppl. 1):111–119

    Article  Google Scholar 

  • Scholtz G (2002) The Articulata hypothesis—or what is a segment? Org Divers Evol 2:197–215

    Article  Google Scholar 

  • Scholtz G (2016) Perspective—heads and brains in arthropods: 40 years after the’endless dispute’. In: Schmidt-Rhaesa A, Harzsch S, Purschke G (eds) Structure and evolution of invertebrate nervous systems. Oxford University Press, Oxford, pp 402–410

    Google Scholar 

  • Scholtz G, Edgecombe GD (2005) Heads, Hox and the phylogenetic position of trilobites. In: Koenemann S, Jenner RA (eds) Crustacea and arthropod relationship. CRC Press, Boca Raton, FL, pp 139–165

    Google Scholar 

  • Scholtz G, Edgecombe GD (2006) The evolution of arthropod heads: reconciling morphological, developmental and palaeontological evidence. Dev Gene Evol 216:395–415

    Article  Google Scholar 

  • Schulze C, Persson D (2016) Tardigrada. In: Schmidt-Rhaesa A, Harzsch S, Purschke G (eds) Structure and evolution of invertebrate nervous systems. Oxford University Press, Oxford, pp 383–389

    Google Scholar 

  • Schulze C, Neves RC, Schmidt-Rhaesa A (2014) Comparative immunohistochemical investigation on the nervous system of two species of Arthrotardigrada (Heterotardigrada, Tardigrada). Zool Anz 253:225–235

    Article  Google Scholar 

  • Schumann I, Hering L, Mayer G (2016) Immunolocalization of Arthropsin in the onychophoran Euperipatoides rowelli (Peripatopsidae). Front Neuroanat 10:80

    Article  PubMed  PubMed Central  Google Scholar 

  • Schürmann FW (1987) Histology and ultrastructure of the onychophoran brain. In: Gupta AP (ed) Arthropod brain, its evolution, development, structure, and functions. Wiley, New York, pp 159–180

    Google Scholar 

  • Schürmann FW (1995) Common and special features of the nervous system of Onychophora: a comparison with Arthropoda, Annelida and some other invertebrates. In: Breidbach O, Kutsch W (eds) The nervous system of invertebrates: an evolutionary and comparative approach. Birkhäuser, Basel, pp 139–158

    Chapter  Google Scholar 

  • Schürmann FW, Sandeman DC (1976) Giant fibres in the ventral nerve cord of Peripatoides leuckarti (Onychophora). Naturwissenschaften 63:580–581

    Article  PubMed  Google Scholar 

  • Sedgwick A (1885) The development of Peripatus capensis. Proc R Soc Lond B Biol Sci 38:354–361

    Article  Google Scholar 

  • Sedgwick A (1887) The development of the Cape species of peripatus. Part III. On the changes from stage A to stage F. Q J Microsc Sci 27:467–550

    Google Scholar 

  • Sedgwick A (1895) Peripatus. In: Harmer SF, Shipley AE (eds) Peripatus, Myriapods and Insects, part I. MacMillan & Co., London, pp 3–26

    Google Scholar 

  • Shichida Y, Matsuyama T (2009) Evolution of opsins and phototransduction. Philos Trans R Soc B Biol Sci 364:2881–2895

    Article  CAS  Google Scholar 

  • Simonnet F, Deutsch J, Quéinnec E (2004) Hedgehog is a segment polarity gene in a crustacean and a chelicerate. Dev Gene Evol 214:537–545

    Article  CAS  Google Scholar 

  • Skeath JB, Panganiban G, Selegue J, Carroll SB (1992) Gene regulation in two dimensions: the proneural achaete and scute genes are controlled by combinations of axis-patterning genes through a common intergenic control region. Gene Dev 6:2606–2619

    Article  CAS  PubMed  Google Scholar 

  • Smith FW, Goldstein B (2017) Segmentation in Tardigrada and diversification of segmental patterns in Panarthropoda. Arthropod Struct Dev 46:328–340

    Article  PubMed  Google Scholar 

  • Smith FW, Jockusch EL (2014) The metameric pattern of Hypsibius dujardini (Eutardigrada) and its relationship to that of other panarthropods. Front Zool 11:66

    Article  Google Scholar 

  • Smith MR, Ortega-Hernández J (2014) Hallucigenia’s onychophoran-like claws and the case for Tactopoda. Nature 514:363–366

    Article  CAS  PubMed  Google Scholar 

  • Smith FW, Boothby TC, Giovannini I, Rebecchi L, Jockusch EL, Goldstein B (2016) The compact body plan of tardigrades evolved by the loss of a large body region. Curr Biol 26:224–229

    Article  CAS  PubMed  Google Scholar 

  • Stegner ME, Brenneis G, Richter S (2014) The ventral nerve cord in Cephalocarida (Crustacea): new insights into the ground pattern of Tetraconata. J Morphol 275:269–294

    Article  CAS  PubMed  Google Scholar 

  • Stein M (2010) A new arthropod from the Early Cambrian of North Greenland, with a ‘great appendage’-like antennula. Zool J Linn Soc 158:477–500

    Article  Google Scholar 

  • Strausfeld NJ, Weltzien P, Barth FG (1993) Two visual systems in one brain: neuropils serving the principal eyes of the spider Cupiennius salei. J Comp Neurol 328:63–75

    Article  CAS  PubMed  Google Scholar 

  • Strausfeld NJ, Strausfeld C, Stowe S, Rowell D, Loesel R (2006a) The organization and evolutionary implications of neuropils and their neurons in the brain of the onychophoran Euperipatoides rowelli. Arthropod Struct Dev 35:169–196

    Article  CAS  PubMed  Google Scholar 

  • Strausfeld NJ, Strausfeld CM, Loesel R, Rowell D, Stowe S (2006b) Arthropod phylogeny: onychophoran brain organization suggests an archaic relationship with a chelicerate stem lineage. Proc R Soc Biol Sci Ser B 273:1857–1866

    Article  Google Scholar 

  • Strausfeld NJ, Ma X, Edgecombe GD (2016) Fossils and the evolution of the arthropod brain. Curr Biol 26:R989–R1000

    Article  CAS  PubMed  Google Scholar 

  • Telford MJ, Thomas RH (1998) Expression of homeobox genes shows chelicerate arthropods retain their deutocerebral segment. Proc Natl Acad Sci USA 95:10671–10675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiegs OW (1940) The embryology and affinities of the Symphyla, based on a study of Hanseniella agilis. Q J Microsc Sci 82:1–225

    Google Scholar 

  • Tiegs OW (1947) The development and affinities of the Pauropoda, based on a study of Pauropus silvaticus. Part I. Q J Microsc Sci 88:165–267

    CAS  PubMed  Google Scholar 

  • Tsujimoto M, Imura S, Kanda H (2016) Recovery and reproduction of an Antarctic tardigrade retrieved from a moss sample frozen for over 30 years. Cryobiology 72:78–81

    Article  PubMed  Google Scholar 

  • Ungerer P, Wolff C (2005) External morphology of limb development in the amphipod Orchestia cavimana (Crustacea, Malacostraca, Peracarida). Zoomorphology 124:89–99

    Article  Google Scholar 

  • von Kennel J (1888) Entwicklungsgeschichte von Peripatus edwardsii Blanch. und Peripatus torquatus n. sp. II. Theil. Arb Zool Zootom Inst Würzburg 8:1–93

    Google Scholar 

  • Vopalensky P, Kozmik Z (2009) Eye evolution: common use and independent recruitment of genetic components. Philos Trans R Soc B Biol Sci 364:2819–2832

    Article  CAS  Google Scholar 

  • Walker MH, Tait NN (2004) Studies on embryonic development and the reproductive cycle in ovoviviparous Australian Onychophora (Peripatopsidae). J Zool 264:333–354

    Article  Google Scholar 

  • Waloszek D, Chen J, Maas A, Wang X (2005) Early Cambrian arthropods—new insights into arthropod head and structural evolution. Arthropod Struct Dev 34:189–205

    Article  Google Scholar 

  • Whitington PM (2007) The evolution of arthropod nervous systems: insights from neural development in the Onychophora and Myriapoda. In: Striedter GF, Rubenstein JLR (eds) Theories, development, invertebrates. Academic Press, Oxford, pp 317–336

    Google Scholar 

  • Whitington PM, Bacon JP (1997) The organization and development of the arthropod ventral nerve cord: insight into arthropod relationships. In: RA F, RH T (eds) Arthropod Relationships. Chapman & Hall, London, pp 349–367

  • Whitington P, Mayer G (2011) The origins of the arthropod nervous system: insights from the Onychophora. Arthropod Struct Dev 40:193–209

    Article  PubMed  Google Scholar 

  • Wiederhöft H, Greven H (1999) Notes on head sensory organs of Milnesium tardigradum Doyère, 1840 (Apochela, Eutardigrada). Zool Anz 238:338–346

    Google Scholar 

  • Yang J, Ortega-Hernández J, Butterfield NJ, Liu Y, Boyan GS, J-b H, Lan T, X-g Z (2016) Fuxianhuiid ventral nerve cord and early nervous system evolution in Panarthropoda. Proc Natl Acad Sci USA 113:2988–2993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zantke J, Wolff C, Scholtz G (2008) Three-dimensional reconstruction of the central nervous system of Macrobiotus hufelandi (Eutardigrada, Parachela): implications for the phylogenetic position of Tardigrada. Zoomorphology 127:21–36

    Article  Google Scholar 

  • Zhang Z-Q (2011) Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness. Zootaxa 3148:1–237

    Google Scholar 

  • Zhang Z-Q (2013) Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness (Addenda 2013). Zootaxa 3703:1–82

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are thankful to Noel N. Tait for his assistance with the permits and to Dave M. Rowell, Paul Sunnucks, Noel N. Tait, Franziska A. Franke, Sandra Treffkorn and Michael Gerth for helping to collect the specimens. We also thank Nicole Naumann for assistance with immunohistochemistry, Jörg U. Hammel for his help with SRµCT and all members of the Mayer laboratory for helping with animal husbandry. We gratefully acknowledge Bert R. E. Klagges for providing the anti-synapsin serum. Two anonymous reviewers provided constructive comments, which helped to improve the manuscript. This study was supported by a German Academic Exchange Service (DAAD) scholarship to VG; a Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq Brazil: 290029/2010-4) Grant to ISO; a Helmholtz Research Centre Grant (DESY: I-20150213) and the Emmy Noether Programme Funding (Ma 4147/3-1), and an additional Grant (Ma 4147/8-1) of the German Research Foundation (DFG) to GM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Mayer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martin, C., Gross, V., Hering, L. et al. The nervous and visual systems of onychophorans and tardigrades: learning about arthropod evolution from their closest relatives. J Comp Physiol A 203, 565–590 (2017). https://doi.org/10.1007/s00359-017-1186-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-017-1186-4

Keywords

Navigation