Skip to main content

Abstract

Onychophorans, or “velvet worms” (Fig. 4.1), are multi-legged, terrestrial invertebrates that inhabit decaying logs, soil, and leaf litter of tropical and temperate forests on landmasses that have resulted from the breakup of Gondwana (Fig. 4.2A). The approximately 200 described species are classified into two major subgroups, the Peripatidae and Peripatopsidae, which might have diverged over 350 million years ago (Fig. 4.2A, B). The anatomy of onychophorans has changed little since the Early Cambrian, as they resemble fossil lobopodians – putative stem-group representatives of Panarthropoda (Onychophora + Tardigrada + Arthropoda).

Chapter vignette artwork by Brigitte Baldrian.© Brigitte Baldrian and Andreas Wanninger.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Juveniles of the oviparous species Ooperipatus hispidus kept in culture at 17 °C hatched only 4 months after egg deposition (unpublished data).

References

  • Ahlrichs WH (1995) Ultrastruktur und Phylogenie von Seison nebaliae (Grube 1859) und Seison annulatus (Claus 1876). Cuvillier Verlag, Göttingen

    Google Scholar 

  • Akiyama-Oda Y, Oda H (2003) Early patterning of the spider embryo: a cluster of mesenchymal cells at the cumulus produces Dpp signals received by germ disc epithelial cells. Development 130:1735–1747

    CAS  PubMed  Google Scholar 

  • Akiyama-Oda Y, Oda H (2006) Axis specification in the spider embryo: dpp is required for radial-to-axial symmetry transformation and sog for ventral patterning. Development 133:2347–2357

    CAS  PubMed  Google Scholar 

  • Allwood J, Gleeson D, Mayer G, Daniels S, Beggs JR, Buckley TR (2010) Support for vicariant origins of the New Zealand Onychophora. J Biogeogr 37:669–681

    Google Scholar 

  • Anderson DT (1966) The comparative early embryology of the Oligochaeta, Hirudinea and Onychophora. Proc Linnean Soc NSW 91:10–43

    Google Scholar 

  • Anderson DT (1973) Embryology and phylogeny in annelids and arthropods, International Series of Monographs in Pure and Applied Biology. Division: Zoology. Pergamon Press, Oxford

    Google Scholar 

  • Anderson DT, Manton SM (1972) Studies on the Onychophora. VIII. The relationship between the embryos and the oviduct in the viviparous placental onychophorans Epiperipatus trinidadensis Bouvier and Macroperipatus torquatus (Kennel) from Trinidad. Philos Trans R Soc B Biol Sci 264:161–189

    Google Scholar 

  • Angelini DR, Kaufman TC (2005) Insect appendages and comparative ontogenetics. Dev Biol 286:57–77

    CAS  PubMed  Google Scholar 

  • Baer A, Mayer G (2012) Comparative anatomy of slime glands in Onychophora (velvet worms). J Morphol 273:1079–1088

    PubMed  Google Scholar 

  • Baer A, Oliveira IS, Steinhagen M, Beck-Sickinger A, Mayer G (2014) Slime protein profiling: a non-invasive tool for species identification in Onychophora (velvet worms). J Zool Syst Evol Res 52:265–272

    Google Scholar 

  • Barclay SD, Rowell DM, Ash JE (2000a) Pheromonally mediated colonization patterns in the velvet worm Euperipatoides rowelli (Onychophora). J Zool 250:437–446

    Google Scholar 

  • Barclay SD, Ash JE, Rowell DM (2000b) Environmental factors influencing the presence and abundance of a log-dwelling invertebrate, Euperipatoides rowelli (Onychophora: Peripatopsidae). J Zool 250:425–436

    Google Scholar 

  • Bartolomaeus T, Ruhberg H (1999) Ultrastructure of the body cavity lining in embryos of Epiperipatus biolleyi (Onychophora, Peripatidae)—a comparison with annelid larvae. Invertebr Biol 118:165–174

    Google Scholar 

  • Bartolomaeus T, Quast B, Koch M (2009) Nephridial development and body cavity formation in Artemia salina (Crustacea: Branchiopoda): no evidence for any transitory coelom. Zoomorphology 128:247–262

    Google Scholar 

  • Beckmann H, Hering L, Henze MJ, Kelber A, Stevenson PA, Mayer G (2015) Spectral sensitivity in Onychophora (velvet worms) revealed by electroretinograms, phototactic behaviour and opsin gene expression. J Exp Biol 218:915–922

    Google Scholar 

  • Bergström J, Hou XG (2001) Cambrian Onychophora or xenusians. Zool Anz 240:237–245

    Google Scholar 

  • Birket-Smith SJR (1974) The anatomy of the body wall of Onychophora. Zool Jahrb Abt Anat Ontog Tiere 93:123–154

    Google Scholar 

  • Blaxter M, Sunnucks P (2011) Velvet worms. Curr Biol 21:R1–R3

    Google Scholar 

  • Bouvier EL (1905) Monographie des Onychophores. Ann Sci Nat Zool Anim [9e Sér] 2:1–383

    Google Scholar 

  • Brinck P (1957) Onychophora, a review of South African species, with a discussion on the significance of the geographical distribution of the group. In: Hanström B, Brinck P, Rudebeck G (eds) South African animal life, vol 4. Almqvist & Wiksell, Stockholm, pp 7–32

    Google Scholar 

  • Brockmann C, Mesibov R, Ruhberg H (1997) Observations on Ooperipatellus decoratus, an oviparous onychophoran from Tasmania (Onychophora: Peripatopsidae). Entomol Scand Suppl 51:319–329

    Google Scholar 

  • Brockmann C, Mummert R, Ruhberg H, Storch V (1999) Ultrastructural investigations of the female genital system of Epiperipatus biolleyi (Bouvier, 1902) (Onychophora, Peripatidae). Acta Zool 80:339–349

    Google Scholar 

  • Brockmann C, Mummert R, Ruhberg H, Storch V (2001) The female genital system of Ooperipatus decoratus (Onychophora, Peripatopsidae): an ultrastructural study. J Morphol 249:77–88

    CAS  PubMed  Google Scholar 

  • Bull JK, Sunnucks P (2014) Strong genetic structuring without assortative mating or reduced hybrid survival in an onychophoran in the Tallaganda State Forest region, Australia. Biol J Linn Soc 111:589–602

    Google Scholar 

  • Bull JK, Sands CJ, Garrick RC, Gardner MG, Tait NN, Briscoe DA, Rowell DM, Sunnucks P (2013) Environmental complexity and biodiversity: the multi-layered evolutionary history of a log-dwelling velvet worm in montane temperate Australia. PLoS One 8(12):e84559

    PubMed Central  PubMed  Google Scholar 

  • Campbell LI, Rota-Stabelli O, Edgecombe GD, Marchioro T, Longhorn SJ, Telford MJ, Philippe H, Rebecchi L, Peterson KJ, Pisani D (2011) MicroRNAs and phylogenomics resolve the relationships of tardigrada and suggest that velvet worms are the sister group of arthropoda. Proc Natl Acad Sci USA 108:15920–15924

    Google Scholar 

  • Campiglia SS, Walker MH (1995) Developing embryo and cyclic changes in the uterus of Peripatus (Macroperipatus) acacioi (Onychophora, Peripatidae). J Morphol 224:179–198

    Google Scholar 

  • Carroll SB, Grenier JK, Weatherbee SD (2005) From DNA to diversity. Molecular genetics and the evolution of animal design, 2nd edn. Blackwell Publishing, Malden

    Google Scholar 

  • Clarke GM, Spier-Ashcroft F (2001) Euperipatoides rowelli. Tallaganda velvet worm. In: A review of the conservation status of selected Australian non-marine invertebrates. Australian biological resources study. Natural Heritage Trust, Australian Government, Department of the Environment, Canberra, Australia pp 52–57

    Google Scholar 

  • Curach N, Sunnucks P (1999) Molecular anatomy of an onychophoran: compartmentalized sperm storage and heterogeneous paternity. Mol Ecol 8:1375–1385

    PubMed  Google Scholar 

  • Dakin WJ (1921) The eye of peripatus. Q J Microsc Sci 65:163–172

    Google Scholar 

  • Damen WGM (2002) Fushi tarazu: a Hox gene changes its role. Bioessays 24:992–995

    CAS  PubMed  Google Scholar 

  • Damen WGM, Tautz D (1999) Abdominal-B expression in a spider suggests a general role for Abdominal-B in specifying the genital structure. J Exp Zool 285:85–91

    CAS  PubMed  Google Scholar 

  • Dearden PK, Akam M (2001) Early embryo patterning in the grasshopper, Schistocerca gregaria: wingless, decapentaplegic and caudal expression. Development 128:3435–3444

    CAS  PubMed  Google Scholar 

  • Dendy A (1892) On the oviparity of Peripatus leuckartii. Proc Roy Soc Victoria 4:31–34

    Google Scholar 

  • Dendy A (1902) On the oviparous species of Onychophora. Q J Microsc Sci 179:363–415

    Google Scholar 

  • Eakin RM, Westfall JA (1965) Fine structure of the eye of peripatus (Onychophora). Z Zellforsch Mikrosk Anat 68:278–300

    CAS  PubMed  Google Scholar 

  • Eriksson BJ, Budd GE (2000) Onychophoran cephalic nerves and their bearing on our understanding of head segmentation and stem-group evolution of Arthropoda. Arthropod Struct Dev 29:197–209

    CAS  PubMed  Google Scholar 

  • Eriksson BJ, Stollewerk A (2010a) The morphological and molecular processes of onychophoran brain development show unique features that are neither comparable to insects nor to chelicerates. Arthropod Struct Dev 39:478–490

    CAS  PubMed  Google Scholar 

  • Eriksson BJ, Stollewerk A (2010b) Expression patterns of neural genes in Euperipatoides kanangrensis suggest divergent evolution of onychophoran and euarthropod neurogenesis. Proc Natl Acad Sci USA 107:22576–22581

    Google Scholar 

  • Eriksson BJ, Tait NN (2012) Early development in the velvet worm Euperipatoides kanangrensis Reid 1996 (Onychophora: Peripatopsidae). Arthropod Struct Dev 41:483–493

    PubMed Central  PubMed  Google Scholar 

  • Eriksson BJ, Tait NN, Budd GE (2003) Head development in the onychophoran Euperipatoides kanangrensis. With particular reference to the central nervous system. J Morphol 255:1–23

    PubMed  Google Scholar 

  • Eriksson BJ, Tait NN, Norman JM, Budd GE (2005) An ultrastructural investigation of the hypocerebral organ of the adult Euperipatoides kanangrensis (Onychophora, Peripatopsidae). Arthropod Struct Dev 34:407–418

    Google Scholar 

  • Eriksson BJ, Tait NN, Budd GE, Akam M (2009) The involvement of engrailed and wingless during segmentation in the onychophoran Euperipatoides kanangrensis (Peripatopsidae: Onychophora) (Reid 1996). Dev Genes Evol 219:249–264

    PubMed  Google Scholar 

  • Eriksson BJ, Tait NN, Budd GE, Janssen R, Akam M (2010) Head patterning and Hox gene expression in an onychophoran and its implications for the arthropod head problem. Dev Genes Evol 220:117–122

    PubMed  Google Scholar 

  • Eriksson BJ, Samadi L, Schmid A (2013) The expression pattern of the genes engrailed, pax6, otd and six3 with special respect to head and eye development in Euperipatoides kanangrensis Reid 1996 (Onychophora: Peripatopsidae). Dev Genes Evol 223:237–246

    PubMed Central  PubMed  Google Scholar 

  • Evans R (1901) On the Malayan species of Onychophora. Part II. – the development of Eoperipatus weldoni. Q J Microsc Sci 45:41–88

    Google Scholar 

  • Farzana L, Brown SJ (2008) Hedgehog signaling pathway function conserved in Tribolium segmentation. Dev Genes Evol 218:181–192

    CAS  PubMed Central  PubMed  Google Scholar 

  • Franke FA, Mayer G (2014) Controversies surrounding segments and parasegments in Onychophora: insights from the expression patterns of four “segment polarity genes” in the peripatopsid Euperipatoides rowelli. PLOS ONE 9(12):e114383

    Google Scholar 

  • Franke FA, Schumann I, Hering L, Mayer G (2015) Phylogenetic analysis and expression patterns of Pax genes in the onychophoran Euperipatoides rowelli reveal a novel bilaterian Pax subfamily. Evol Dev 17:3–20

    Google Scholar 

  • Frase T, Richter S (2013) The fate of the onychophoran antenna. Dev Genes Evol 223:247–251

    PubMed  Google Scholar 

  • Gabe M (1957) Données histologiques sur les organes segmentaires des peripatopsidae (onychophores). Arch Anat Microsc Morphol Exp 46:283–305

    CAS  PubMed  Google Scholar 

  • Gabriel WN, McNuff R, Patel SK, Gregory TR, Jeck WR, Jones CD, Goldstein B (2007) The tardigrade Hypsibius dujardini, a new model for studying the evolution of development. Dev Biol 312:545–559

    CAS  PubMed  Google Scholar 

  • Gehring WJ, Ikeo K (1999) Pax 6: mastering eye morphogenesis and eye evolution. Trends Genet 15:371–377

    CAS  PubMed  Google Scholar 

  • Ghiselin MT (1985) A movable feaster. Nat Hist 94:54–61

    Google Scholar 

  • Gilbert SF (2013) Developmental biology, 10th edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Giribet G, Edgecombe G (2012) Reevaluating the arthropod tree of life. Annu Rev Entomol 57:167–186

    CAS  PubMed  Google Scholar 

  • Gleeson DM, Rowell DM, Briscoe AV, Tait NN, Higgins AV (1998) Phylogenetic relationships among Onychophora from Australasia inferred from the mitochondrial cytochrome oxidase subunit I gene. Mol Phylogenet Evol 10:237–248

    CAS  PubMed  Google Scholar 

  • Gonzalez-Crespo S, Morata G (1996) Genetic evidence for the subdivision of the arthropod limb into coxopodite and telopodite. Development 122:3921–3928

    CAS  PubMed  Google Scholar 

  • Grenier JK, Garber TL, Warren R, Whitington PM, Carroll S (1997) Evolution of the entire arthropod Hox gene set predated the origin and radiation of the onychophoran/arthropod clade. Curr Biol 7:547–553

    CAS  PubMed  Google Scholar 

  • Hanström B (1928) Onychophora. In: Vergleichende Anatomie des Nervensystems der wirbellosen Tiere unter Berücksichtigung seiner Funktion. Springer, Berlin, pp 341–351

    Google Scholar 

  • Haritos VS, Niranjane A, Weisman S, Trueman HE, Sriskantha A, Sutherland TD (2010) Harnessing disorder: onychophorans use highly unstructured proteins, not silks, for prey capture. Proc R Soc B Biol Sci 277:3255–3263

    CAS  Google Scholar 

  • Haug JT, Mayer G, Haug C, Briggs DEG (2012) A Carboniferous non-onychophoran lobopodian reveals long-term survival of a Cambrian morphotype. Curr Biol 22:1673–1675

    CAS  PubMed  Google Scholar 

  • Hejnol A, Schnabel R (2005) The eutardigrade Thulinia stephaniae has an indeterminate development and the potential to regulate early blastomere ablations. Development 132:1349–1361

    CAS  PubMed  Google Scholar 

  • Hering L, Henze MJ, Kohler M, Kelber A, Bleidorn C, Leschke M, Nickel B, Meyer M, Kircher M, Sunnucks P, Mayer G (2012) Opsins in Onychophora (velvet worms) suggest a single origin and subsequent diversification of visual pigments in arthropods. Mol Biol Evol 29:3451–3458

    CAS  PubMed  Google Scholar 

  • Herzberg A, Ruhberg H, Storch V (1980) Zur Ultrastruktur des weiblichen Genitaltraktes der Peripatopsidae (Onychophora). Zool Jahrb Abt Anat Ontog Tiere 104:266–279

    Google Scholar 

  • Hewitt CG (1905) Note on the buccal pits of Peripatus. Mem Proc Manchester Lit Phil Soc 50:2–8

    Google Scholar 

  • Hidalgo A, Ingham P (1990) Cell patterning in the Drosophila segment: spatial regulation of the segment polarity gene patched. Development 110:291–301

    CAS  PubMed  Google Scholar 

  • Hilken G (1998) Vergleich von Tracheensystemen unter phylogenetischem Aspekt. Verh Naturwiss Ver Hambg 37:5–94

    Google Scholar 

  • Ho K, Dunin-Borkowski OM, Akam M (1997) Cellularization in locust embryos occurs before blastoderm formation. Development 124:2761–2768

    CAS  PubMed  Google Scholar 

  • Hoffmann KH (1997) Ecdysteroids in adult females of a “walking worm”: Euperipatoides leuckartii (Onychophora, Peripatopsidae). Invertebr Reprod Dev 32:27–30

    CAS  Google Scholar 

  • Hofmann K (1988) Observations on Peripatopsis clavigera (Onychophora, Peripatopsidae). S Afr J Zool 23:255–258

    Google Scholar 

  • Hogvall M, Schönauer A, Budd GE, McGregor AP, Posnien N, Janssen R (2014) Analysis of the Wnt gene repertoire in an onychophoran provides new insights into the evolution of segmentation. EvoDevo 5:14

    PubMed Central  PubMed  Google Scholar 

  • Holland LZ, Holland ND, Schubert M (2000) Developmental expression of AmphiWnt1, an amphioxus gene in the Wnt1/wingless subfamily. Dev Genes Evol 210:522–524

    CAS  PubMed  Google Scholar 

  • Holliday RA (1942) Some observations on Natal Onychophora. Ann Natal Mus 10:237–244

    Google Scholar 

  • Holm A (1952) Experimentelle Untersuchungen über die Entwicklung und Entwicklungsphysiologie des Spinnenembryos. Zool Bijdr 29:293–424

    Google Scholar 

  • Holmgren NF (1916) Zur vergleichenden Anatomie des Gehirns von Polychaeten, Onychophoren, Xiphosuren, Arachniden, Crustaceen, Myriapoden, und Insekten. Vorstudien zu einer Phylogenie der Arthropoden. Kungl Svenska Vetenskapsakad Handlingar [Ser 2] 56:1–303

    Google Scholar 

  • Hoyle G, Williams M (1980) The musculature of Peripatus and its innervation. Philos Trans R Soc B-Biol Sci 288:481–510

    Google Scholar 

  • Huebner E, Lococo DJ (1994) Oogenesis in a placental viviparous onychophoran. Tissue Cell 26:867–889

    CAS  PubMed  Google Scholar 

  • Hughes CL, Kaufman TC (2002a) Exploring the myriapod body plan: expression patterns of the ten Hox genes in a centipede. Development 129:1225–1238

    CAS  PubMed  Google Scholar 

  • Hughes CL, Kaufman TC (2002b) Hox genes and the evolution of the arthropod body plan. Evol Dev 4:459–499

    CAS  PubMed  Google Scholar 

  • Janssen R, Budd GE (2013) Deciphering the onychophoran ‘segmentation gene cascade’: gene expression reveals limited involvement of pair rule gene orthologs in segmentation, but a highly conserved segment polarity gene network. Dev Biol 382:224–234

    CAS  PubMed  Google Scholar 

  • Janssen R, Damen WGM (2006) The ten Hox genes of the millipede Glomeris marginata. Dev Genes Evol 216:451–465

    CAS  PubMed  Google Scholar 

  • Janssen R, Budd GE, Damen WGM, Prpic NM (2008) Evidence for Wg-independent tergite boundary formation in the millipede Glomeris marginata. Dev Genes Evol 218:361–370

    CAS  PubMed  Google Scholar 

  • Janssen R, Eriksson BJ, Budd GE, Akam M, Prpic NM (2010) Gene expression patterns in an onychophoran reveal that regionalization predates limb segmentation in pan-arthropods. Evol Dev 12:363–372

    CAS  PubMed  Google Scholar 

  • Janssen R, Damen WGM, Budd GE (2011) Expression of collier in the premandibular segment of myriapods: support for the traditional Atelocerata concept or a case of convergence? BMC Evol Biol 11:50

    PubMed Central  PubMed  Google Scholar 

  • Janssen R, Eriksson BJ, Tait NN, Budd GE (2014) Onychophoran Hox genes and the evolution of arthropod Hox gene expression. Front Zool 11:22

    PubMed Central  PubMed  Google Scholar 

  • Jeffery NW, Oliveira IS, Gregory TR, Rowell DM, Mayer G (2012) Genome size and chromosome number in velvet worms (Onychophora). Genetica 140:497–504

    CAS  PubMed  Google Scholar 

  • Jockusch EL, Nulsen C, Newfeld SJ, Nagy LM (2000) Leg development in flies versus grasshoppers: differences in dpp expression do not lead to differences in the expression of downstream components of the leg patterning pathway. Development 127:1617–1626

    CAS  PubMed  Google Scholar 

  • Kemp S (1914) Onychophora. Rec Indian Mus 8:471–492

    Google Scholar 

  • Kennel J (1885) Entwicklungsgeschichte von Peripatus edwardsii Blanch. und Peripatus torquatus n.sp. I. Theil. Arb Zool Zootom Inst Wrzburg 7:95–229

    Google Scholar 

  • Kennel J (1888) Entwicklungsgeschichte von Peripatus edwardsii Blanch. und Peripatus torquatus n. sp. II. Theil. Arb Zool Zootom Inst Wrzburg 8:1–93

    Google Scholar 

  • Koch M, Quast B, Bartolomaeus T (2014) Coeloms and nephridia in annelids and arthropods. In: Wägele W, Bartolomaeus T (eds) Deep metazoan phylogeny: the backbone of the tree of life. New insights from analyses of molecules, morphology, and theory of data analysis. De Gruyter, Berlin, pp 173–284

    Google Scholar 

  • Korschelt E, Heider K (1899) Onychophora (Peripatus). In: Text-book of the embryology of invertebrates, volume III. Arachnida, Pentastomidae, Pantopoda, Tardigrada, Onychophora, Myriapoda, Insecta. Macmillan, New York, pp 164–217

    Google Scholar 

  • Kozmik Z (2008) The role of Pax genes in eye evolution. Brain Res Bull 75:335–339

    CAS  PubMed  Google Scholar 

  • Lavallard R, Campiglia S (1988) Le tubule distal des 4e et 5e paires d’organes rénaux chez Peripatus acacioi Marcus et Marcus (Onychophora: Peripatidae): étude infrastructurale. C R Acad Sci III Sci Vie 307:415–421

    Google Scholar 

  • Maas A, Mayer G, Kristensen RM, Waloszek D (2007) A Cambrian micro-lobopodian and the evolution of arthropod locomotion and reproduction. Chin Sci Bull 52:3385–3392

    Google Scholar 

  • Manton SM (1938a) Studies on the Onychophora—VI. The life-history of Peripatopsis. Ann Mag Nat Hist [Ser 11] 1:515–529

    Google Scholar 

  • Manton SM (1938b) Studies on the Onychophora, IV. The passage of spermatozoa into the ovary in peripatopsis and the early development of the ova. Philos Trans R Soc B-Biol Sci 228:421–444

    Google Scholar 

  • Manton SM (1949) Studies on the Onychophora VII. The early embryonic stages of Peripatopsis, and some general considerations concerning the morphology and phylogeny of the arthropoda. Philos Trans R Soc B-Biol Sci 233:483–580

    Google Scholar 

  • Manton SM, Heatley NG (1937) Studies on the Onychophora. II. The feeding, digestion, excretion, and food storage of Peripatopsis, with biochemical estimations and analyses. Philos Trans R Soc B-Biol Sci 227:411–464

    Google Scholar 

  • Martin C, Mayer G (2014) Neuronal tracing of oral nerves in a velvet worm – Implications for the evolution of the ecdysozoan brain. Front Neuroanat 8(7):1–13

    Google Scholar 

  • Mayer G (2006a) Origin and differentiation of nephridia in the Onychophora provide no support for the Articulata. Zoomorphology 125:1–12

    Google Scholar 

  • Mayer G (2006b) Structure and development of onychophoran eyes—what is the ancestral visual organ in arthropods? Arthropod Struct Dev 35:231–245

    PubMed  Google Scholar 

  • Mayer G (2007) Metaperipatus inae sp. nov. (Onychophora: Peripatopsidae) from Chile with a novel ovarian type and dermal insemination. Zootaxa 1440:21–37

    Google Scholar 

  • Mayer G (2015) Onychophora. In: Schmidt-Rhaesa A, Harzsch S, Purschke G (eds) Structure and evolution of invertebrate nervous systems. Oxford University Press, Oxford

    Google Scholar 

  • Mayer G, Harzsch S (2007) Immunolocalization of serotonin in Onychophora argues against segmental ganglia being an ancestral feature of arthropods. BMC Evol Biol 7:118

    PubMed Central  PubMed  Google Scholar 

  • Mayer G, Harzsch S (2008) Distribution of serotonin in the trunk of Metaperipatus blainvillei (Onychophora, Peripatopsidae): implications for the evolution of the nervous system in Arthropoda. J Comp Neurol 507:1196–1208

    PubMed  Google Scholar 

  • Mayer G, Koch M (2005) Ultrastructure and fate of the nephridial anlagen in the antennal segment of Epiperipatus biolleyi (Onychophora, Peripatidae)—evidence for the onychophoran antennae being modified legs. Arthropod Struct Dev 34:471–480

    Google Scholar 

  • Mayer G, Oliveira IS (2011) Phylum Onychophora Grube, 1853. In: Zhang ZQ (ed) Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness. Zootaxa 3148:98

    Google Scholar 

  • Mayer G, Oliveira IS (2013) Phylum Onychophora Grube, 1853. In: Zhang, Z.-Q. (Ed.) Animal Biodiversity: An Outline of Higher-level Classification and Survey of Taxonomic Richness (Addenda 2013). Zootaxa, 3703: 1–82

    Google Scholar 

  • Mayer G, Tait NN (2009) Position and development of oocytes in velvet worms shed light on the evolution of the ovary in Onychophora and Arthropoda. Zool J Linnean Soc 157:17–33

    Google Scholar 

  • Mayer G, Whitington PM (2009a) Neural development in Onychophora (velvet worms) suggests a step-wise evolution of segmentation in the nervous system of Panarthropoda. Dev Biol 335:263–275

    CAS  PubMed  Google Scholar 

  • Mayer G, Whitington PM (2009b) Velvet worm development links myriapods with chelicerates. Proc R Soc B Biol Sci 276:3571–3579

    Google Scholar 

  • Mayer G, Ruhberg H, Bartolomaeus T (2004) When an epithelium ceases to exist—an ultrastructural study on the fate of the embryonic coelom in Epiperipatus biolleyi (Onychophora, Peripatidae). Acta Zool 85:163–170

    Google Scholar 

  • Mayer G, Bartolomaeus T, Ruhberg H (2005) Ultrastructure of mesoderm in embryos of Opisthopatus roseus (Onychophora, Peripatopsidae): revision of the “long germ band” hypothesis for Opisthopatus. J Morphol 263:60–70

    PubMed  Google Scholar 

  • Mayer G, Whitington PM, Sunnucks P, Pflüger H-J (2010a) A revision of brain composition in Onychophora (velvet worms) suggests that the tritocerebrum evolved in arthropods. BMC Evol Biol 10:255

    PubMed Central  PubMed  Google Scholar 

  • Mayer G, Kato C, Quast B, Chisholm RH, Landman KA, Quinn LM (2010b) Growth patterns in Onychophora (velvet worms): lack of a localised posterior proliferation zone. BMC Evol Biol 10:339

    PubMed Central  PubMed  Google Scholar 

  • Mayer G, Kauschke S, Rüdiger J, Stevenson PA (2013a) Neural markers reveal a one-segmented head in tardigrades (water bears). PLoS One 8(3):e59090

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mayer G, Martin C, Rüdiger J, Kauschke S, Stevenson PA, Poprawa I, Hohberg K, Schill RO, Pflüger H-J, Schlegel M (2013b) Selective neuronal staining in tardigrades and onychophorans provides insights into the evolution of segmental ganglia in panarthropods. BMC Evol Biol 13:230

    PubMed Central  PubMed  Google Scholar 

  • Mayer G, Martin C, Oliveira IS, Franke FA, Gross V (2014) Latest anomalocaridid affinities challenged. Nature 516:E1–E2

    Google Scholar 

  • Mayer G, Oliveira IS, Baer A, Hammel JU, Gallant J, Hochberg R (2015a) Capture of prey, feeding, and functional anatomy of the jaws in velvet worms (Onychophora). Integr Comp Biol [doi:10.1093/icb/icv004]

    Google Scholar 

  • Mayer G, Hering L, Stosch JM, Stevenson PA, Dircksen H (2015b) Evolution of pigment-dispersing factor neuropeptides in Panarthropoda: insights from Onychophora (velvet worms) and Tardigrada (water bears). J Comp Neurol [doi:10.1002/cne.23767]

    Google Scholar 

  • McGregor AP, Hilbrant M, Pechmann M, Schwager EE, Prpic NM, Damen WGM (2008) Cupiennius salei and Achaearanea tepidariorum: spider models for investigating evolution and development. Bioessays 30:487–498

    PubMed  Google Scholar 

  • Meyer NP, Seaver EC (2009) Neurogenesis in an annelid: characterization of brain neural precursors in the polychaete Capitella sp. I. Dev Biol 335:237–252

    CAS  PubMed  Google Scholar 

  • Mouchel-Vielh E, Blin M, Rigolot C, Deutsch JS (2002) Expression of a homologue of the fushi tarazu (ftz) gene in a cirripede crustacean. Evol Dev 4:76–85

    CAS  PubMed  Google Scholar 

  • Murdock DJE, Gabbott SE, Mayer G, Purnell MA (2014) Decay of velvet worms (Onychophora), and bias in the fossil record of lobopodians. BMC Evol Biol 14:222

    Google Scholar 

  • Murienne J, Daniels SR, Buckley TR, Mayer G, Giribet G (2014) A living fossil tale of Pangean biogeography. Proc R Soc B Biol Sci 281:20132648. In press

    Google Scholar 

  • Nielsen C (2012) Animal evolution: interrelationships of the living phyla, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  • Nielsen C (2013) The triradiate sucking pharynx in animal phylogeny. Invertebr Biol 132:1–13

    Google Scholar 

  • Niwa N, Inoue Y, Nozawa A, Saito M, Misumi Y, Ohuchi H, Yoshioka H, Noji S (2000) Correlation of diversity of leg morphology in Gryllus bimaculatus (cricket) with divergence in dpp expression pattern during leg development. Development 127:4373–4381

    CAS  PubMed  Google Scholar 

  • Norman JM, Tait NN (2004) Light and electron microscopy of the egg membranes and oviduct of the oviparous peripatus Planipapillus mundus (Onychophora: Peripatopsidae). Microsc Microanal 10:244–245

    Google Scholar 

  • Norman JM, Tait NN (2008) Ultrastructure of the eggshell and its formation in Planipapillus mundus (Onychophora: Peripatopsidae). J Morphol 269:1263–1275

    PubMed  Google Scholar 

  • Nulsen C, Nagy LM (1999) The role of wingless in the development of multibranched crustacean limbs. Dev Genes Evol 209:340–348

    CAS  PubMed  Google Scholar 

  • Nylund A, Ruhberg H, Tjonneland A, Meidell B (1988) Heart ultrastructure in four species of Onychophora (Peripatopsidae and Peripatidae) and phylogenetic implications. Zool Beitr 32:17–30

    Google Scholar 

  • Oliveira IS, Mayer G (2013) Apodemes associated with limbs support serial homology of claws and jaws in Onychophora (velvet worms). J Morphol 274:1180–1190

    Google Scholar 

  • Oliveira IS, Read VMSJ, Mayer G (2012a) A world checklist of Onychophora (velvet worms), with notes on nomenclature and status of names. ZooKeys 211:1–70

    Google Scholar 

  • Oliveira IS, Franke FA, Hering L, Schaffer S, Rowell DM, Weck-Heimann A, Monge-Nájera J, Morera-Brenes B, Mayer G (2012b) Unexplored character diversity in Onychophora (velvet worms): a comparative study of three peripatid species. PLoS One 7(12):e51220

    CAS  PubMed Central  Google Scholar 

  • Oliveira IS, Schaffer S, Kvartalnov PV, Galoyan EA, Palko IV, Weck-Heimann A, Geissler P, Ruhberg H, Mayer G (2013a) A new species of Eoperipatus (Onychophora) from Vietnam reveals novel morphological characters for the South-East Asian Peripatidae. Zool Anz 252:495–510

    Google Scholar 

  • Oliveira IS, Tait NN, Strübing I, Mayer G (2013b) The role of ventral and preventral organs as attachment sites for segmental limb muscles in Onychophora. Front Zool 10:73

    Google Scholar 

  • Oliveira IS, Lüter C, Wolf KW, Mayer G (2014a) Evolutionary changes in the integument of the onychophoran Plicatoperipatus jamaicensis (Peripatidae). Invertebr Biol 133:274–280

    Google Scholar 

  • Oliveira MB, Liedholm SE, Lopez JE, Lochte AA, Pazio M, Martin JP, Mörch PR, Salakka S, York J, Yoshimoto A, Janssen R (2014b) Expression of arthropod distal limb-patterning genes in the onychophoran Euperipatoides kanangrensis. Dev Genes Evol 224:87–96

    PubMed  Google Scholar 

  • Ou Q, Shu D, Mayer G (2012) Cambrian lobopodians and extant onychophorans provide new insights into early cephalization in Panarthropoda. Nat Commun 3:1261

    PubMed Central  PubMed  Google Scholar 

  • Pflugfelder O (1948) Entwicklung von Paraperipatus amboinensis n. sp. Zool Jahrb Abt Anat Ontog Tiere 69:443–492

    Google Scholar 

  • Pflugfelder O (1955) Die Tracheen der Onychophoren und der Insekten. Mikrokosmos 44:169–171

    Google Scholar 

  • Pflugfelder O (1962) Onychophora. In: Pflugfelder O (ed) Lehrbuch der Entwicklungsgeschichte und Entwicklungsphysiologie der Tiere. Gustav Fischer, Jena, pp 139–144

    Google Scholar 

  • Pflugfelder O (1968) Onychophora. In: Czihak G (ed) Grosses Zoologisches Praktikum, vol 13a. Gustav Fischer, Stuttgart, pp 1–42

    Google Scholar 

  • Prpic NM (2004) Homologs of wingless and decapentaplegic display a complex and dynamic expression profile during appendage development in the millipede Glomeris marginata (Myriapoda: Diplopoda). Front Zool 1:1–12

    Google Scholar 

  • Prpic NM, Tautz D (2003) The expression of the proximodistal axis patterning genes Distal-less and dachshund in the appendages of Glomeris marginata (Myriapoda: Diplopoda) suggests a special role of these genes in patterning the head appendages. Dev Biol 260:97–112

    CAS  PubMed  Google Scholar 

  • Prpic NM, Telford MJ (2008) Expression of homothorax and extradenticle mRNA in the legs of the crustacean Parhyale hawaiensis: evidence for a reversal of gene expression regulation in the pancrustacean lineage. Dev Genes Evol 218:333–339

    CAS  PubMed Central  PubMed  Google Scholar 

  • Prpic NM, Janssen R, Wigand B, Klingler M, Damen WGM (2003) Gene expression in spider appendages reveals reversal of exd/hth spatial specificity, altered leg gap gene dynamics, and suggests divergent distal morphogen signaling. Dev Biol 264:119–140

    CAS  PubMed  Google Scholar 

  • Read VMSJ, Hughes RN (1987) Feeding behaviour and prey choice in Macroperipatus torquatus (Onychophora). Proc R Soc Lond B Biol Sci 230:483–506

    Google Scholar 

  • Reid AL (1996) Review of the Peripatopsidae (Onychophora) in Australia, with comments on peripatopsid relationships. Invertebr Taxon 10:663–936

    Google Scholar 

  • Reinhard J, Rowell DM (2005) Social behaviour in an Australian velvet worm, Euperipatoides rowelli (Onychophora: Peripatopsidae). J Zool 267:1–7

    Google Scholar 

  • Rota-Stabelli O, Kayal E, Gleeson D, Daub J, Boore J, Telford M, Pisani D, Blaxter M, Lavrov D (2010) Ecdysozoan mitogenomics: evidence for a common origin of the legged invertebrates, the panarthropoda. Genome Biol Evol 2:425–440

    PubMed Central  PubMed  Google Scholar 

  • Rowell DM, Higgins AV, Briscoe AV, Tait NN (1995) The use of chromosomal data in the systematics of viviparous onychophorans from Australia (Onychophora: Peripatopsidae). Zool J Linnean Soc 114:139–153

    Google Scholar 

  • Ruhberg H (1985) Die Peripatopsidae (Onychophora). Systematik, Ökologie, Chorologie und phylogenetische Aspekte. In: Schaller F (ed) Zoologica, Heft 137. E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp 1–183

    Google Scholar 

  • Ruhberg H, Mayer G (2013) Onychophora, Stummelfüßer. In: Westheide W, Rieger G (eds) Spezielle Zoologie. Teil 1. Einzeller und Wirbellose Tiere. Springer, Berlin, pp 457–464

    Google Scholar 

  • Ruhberg H, Storch V (1976) Zur Ultrastruktur von männlichem Genitaltrakt, Spermiocytogenese und Spermien von Peripatopsis moseleyi (Onychophora). Zoomorphologie 85:1–15

    Google Scholar 

  • Ruhberg H, Storch V (1977) Über Wehrdrüsen und Wehrsekret von Peripatopsis moseleyi (Onychophora). Zool Anz 198:9–19

    Google Scholar 

  • Ruhberg H, Storch V (1978) Zur Ultrastruktur der accessorischen Genitaldrüsen von Opisthopatus cinctipes (Onychophora, Peripatopsidae). Zool Anz 200:289–299

    Google Scholar 

  • Sakuma M, Machida R (2002) Germ band formation of a centipede Scolopocryptops rubiginosus L. Koch (Chilopda: Scolopendromorpha). Proc Arthropodan Embryol Soc Jpn 37:19–23

    Google Scholar 

  • Sakuma M, Machida R (2004) Germ band formation of a centipede Scolopendra subspinipes L. Koch (Chilopoda: Scolopendromorpha). Proc Arthropodan Embryol Soc Jpn 39:41–43

    Google Scholar 

  • Sanchez S (1958) Cellules neurosécrétrices et organes infracérébraux de Peripatopsis moseleyi wood (Onychophores) et neurosécrétion chez Nymphon gracile leach (Pycnogonides). Arch Zool Exp Gen [Notes Rev] 96:57–62

    Google Scholar 

  • Sanchez-Salazar J, Pletcher MT, Bennett RL, Brown SJ, Dandamudi TJ, Denell RE, Doctor JS (1996) The Tribolium decapentaplegic gene is similar in sequence, structure, and expression to the Drosophila dpp gene. Dev Genes Evol 206:237–246

    CAS  PubMed  Google Scholar 

  • Sanson B (2001) Generating patterns from fields of cells. Examples from Drosophila segmentation. EMBO Rep 2:1083–1088

    CAS  PubMed Central  PubMed  Google Scholar 

  • Scholtz G, Edgecombe GD (2006) The evolution of arthropod heads: reconciling morphological, developmental and palaeontological evidence. Dev Genes Evol 216:395–415

    PubMed  Google Scholar 

  • Scholtz G, Wolff C (2013) Arthropod embryology: cleavage and germ band development. In: Minelli A, Boxshall G, Fusco G (eds) Arthropod biology and evolution. Springer, Heidelberg, pp 63–89

    Google Scholar 

  • Schwager EE, Schoppmeier M, Pechmann M, Damen WGM (2007) Duplicated Hox genes in the spider Cupiennius salei. Front Zool 4:10

    PubMed Central  PubMed  Google Scholar 

  • Sclater WL (1887) Notes on the Peripatus of British Guiana. Proc Zool Soc Lond 1887:130–137

    Google Scholar 

  • Sclater WL (1888) On the early stages of the development of South American species of Peripatus. Q J Microsc Sci 28:343–363

    Google Scholar 

  • Sclater WL (1889) On the early stages of the development of a South African species of Peripatus. Stud Morphol Lab Univ Camb 4:213–229

    Google Scholar 

  • Scott IAW, Rowell DM (1991) Population biology of Euperipatoides leuckartii (Onychophora: Peripatopsidae). Aust J Zool 39:499–508

    Google Scholar 

  • Seaver EC, Kaneshige LM (2006) Expression of ‘segmentation’ genes during larval and juvenile development in the polychaetes Capitella sp. I and H. elegans. Dev Biol 289:179–194

    CAS  PubMed  Google Scholar 

  • Sedgwick A (1885) The development of Peripatus capensis. Part I. Q J Microsc Sci 25:449–468

    Google Scholar 

  • Sedgwick A (1886) The development of the Cape species of Peripatus. Part II. Q J Microsc Sci 26:175–212

    Google Scholar 

  • Sedgwick A (1887) The development of the Cape species of Peripatus. Part III. On the changes from stage A to stage F. Q J Microsc Sci 27:467–550

    Google Scholar 

  • Sedgwick A (1888a) A monograph of the development of Peripatus capensis. Stud Morphol Lab Univ Camb 4:1–146

    Google Scholar 

  • Sedgwick A (1888b) The development of the Cape species of Peripatus. Part IV. The changes from stage G to birth. Q J Microsc Sci 28:373–396

    Google Scholar 

  • Sheldon L (1887) On the development of Peripatus novae-zealandiae. Q J Microsc Sci 28:205–237

    Google Scholar 

  • Sheldon L (1888) On the development of Peripatus novae-zealandiae. Q J Microsc Sci 29:283–294

    Google Scholar 

  • Sheldon L (1889a) On the development of Peripatus novae-zealandiae. Part 1. Stud Morphol Lab Univ Camb 4:230–262

    Google Scholar 

  • Sheldon L (1889b) On the development of Peripatus novae-zealandiae. Stud Morphol Lab Univ Camb 4:263–274

    Google Scholar 

  • Steinmetz PRH, Urbach R, Posnien N, Eriksson J, Kostyuchenko RP, Brena C, Guy K, Akam M, Bucher G, Arendt D (2010) Six3 demarcates the anterior-most developing brain region in bilaterian animals. EvoDevo 1:14

    PubMed Central  PubMed  Google Scholar 

  • Storch V, Ruhberg H (1990) Electron microscopic observations on the male genital tract and sperm development in Peripatus sedgwicki (Peripatidae, Onychophora). Invertebr Reprod Dev 17:47–56

    Google Scholar 

  • Storch V, Ruhberg H (1993) Onychophora. In: Harrison FW, Rice ME (eds) Microscopic anatomy of invertebrates, vol 12, Onychophora, Chilopoda, and Lesser Protostomata. Wiley-Liss, New York, pp 11–56

    Google Scholar 

  • Storch V, Ruhberg H, Alberti G (1978) Zur Ultrastruktur der Segmentalorgane der Peripatopsidae (Onychophora). Zool Jahrb Abt Anat Ontog Tiere 100:47–63

    Google Scholar 

  • Storch V, Alberti G, Ruhberg H (1979) Light and electron microscopical investigations on the salivary glands of Opisthopatus cinctipes and Peripatopsis moseleyi (Onychophora: Peripatopsidae). Zool Anz 203:35–47

    Google Scholar 

  • Storch V, Holm P, Ruhberg H (1988) Zur Ultrastruktur und Histochemie des Darmkanals verschiedener Onychophora. Zool Anz 221:281–294

    Google Scholar 

  • Storch V, Mummert R, Ruhberg H (1995) Electron microscopic observations on the male genital tract, sperm development, spermatophore formation, and capacitation in Epiperipatus biolleyi (Bouvier) (Peripatidae, Onychophora). Mitt Hambg Zool Mus Inst 92:365–379

    Google Scholar 

  • Strausfeld NJ, Strausfeld C, Stowe S, Rowell D, Loesel R (2006a) The organization and evolutionary implications of neuropils and their neurons in the brain of the onychophoran Euperipatoides rowelli. Arthropod Struct Dev 35:169–196

    CAS  PubMed  Google Scholar 

  • Strausfeld NJ, Strausfeld CM, Loesel R, Rowell D, Stowe S (2006b) Arthropod phylogeny: onychophoran brain organization suggests an archaic relationship with a chelicerate stem lineage. Proc R Soc Biol Sci Ser B 273:1857–1866

    Google Scholar 

  • Sunnucks P, Tait N (2001) What’s so interesting about velvet-worm sex? Tales of the unexpected. Nat Aust 27:60–69

    Google Scholar 

  • Sunnucks P, Wilson ACC (1999) Microsatellite markers for the onychophoran Euperipatoides rowelli. Mol Ecol 8:899–900

    CAS  PubMed  Google Scholar 

  • Sunnucks P, Curach NC, Young A, French J, Cameron R, Briscoe DA, Tait NN (2000) Reproductive biology of the onychophoran Euperipatoides rowelli. J Zool 250:447–460

    Google Scholar 

  • Tait NN, Norman JM (2001) Novel mating behaviour in Florelliceps stutchburyae gen. nov., sp. nov. (Onychophora: Peripatopsidae) from Australia. J Zool 253:301–308

    Google Scholar 

  • Tait NN, Briscoe DA, Rowell DM (1995) Onychophora – ancient and modern radiations. Mem Assoc Australas Paleontol 18:21–30

    Google Scholar 

  • Treffkorn S, Mayer G (2013) Expression of the decapentaplegic ortholog in embryos of the onychophoran Euperipatoides rowelli. Gene Expr Patterns 13:384–394

    CAS  PubMed  Google Scholar 

  • Tutt K, Daugherty CH, Gibbs GW (2002) Differential life-history characteristics of male and female Peripatoides novaezealandiae (Onychophora: Peripatopsidae). J Zool 258:257–267

    Google Scholar 

  • Walker MH (1992) Scanning electron microscope observations of embryonic development in Opisthopatus cinctipes Purcell (Onychophora, Peripatopsidae). Ber Natwiss-Med Ver Innsbruck Suppl 10:459–464

    Google Scholar 

  • Walker MH (1995) Relatively recent evolution of an unusual pattern of early embryonic development (long germ band?) in a South African onychophoran, Opisthopatus cinctipes Purcell (Onychophora: Peripatopsidae). Zool J Linnean Soc 114:61–75

    Google Scholar 

  • Walker M, Campiglia S (1988) Some aspects of segment formation and post-placental development in Peripatus acacioi Marcus and Marcus (Onychophora). J Morphol 195:123–140

    Google Scholar 

  • Walker M, Campiglia S (1990) Some observations on the placenta and embryonic cuticle during development in Peripatus acacioi Marcus and Marcus (Onychophora, Peripatidae). In: Minelli A (ed) Proceedings of the 7th International congress myriapodology. E.J.Brill, Leiden, pp 449–459

    Google Scholar 

  • Walker MH, Tait NN (2004) Studies of embryonic development and the reproductive cycle in ovoviviparous Australian Onychophora (Peripatopsidae). J Zool 264:333–354

    Google Scholar 

  • Walker MH, Roberts EM, Roberts T, Spitteri G, Streubig MJ, Hartland JL, Tait NN (2006) Observations on the structure and function of the seminal receptacles and associated accessory pouches in ovoviviparous onychophorans from Australia (Peripatopsidae; Onychophora). J Zool 270:531–542

    Google Scholar 

  • Weygoldt P (1986) Arthropod interrelationships: the phylogenetic-systematic approach. Z Zool Syst Evolutionsforsch 24:19–35

    Google Scholar 

  • Whitington PM (2007) The evolution of arthropod nervous systems: insights from neural development in the Onychophora and Myriapoda. In: Striedter GF, Rubenstein JLR (eds) Theories, development, invertebrates, vol 1, Evolution of nervous systems. Academic, Oxford, pp 317–336

    Google Scholar 

  • Whitington PM, Mayer G (2011) The origins of the arthropod nervous system: insights from the Onychophora. Arthropod Struct Dev 40:193–209

    PubMed  Google Scholar 

  • Willey A (1898) The anatomy and development of Peripatus novae-britanniae. The University Press, Cambridge, pp 1–52

    Google Scholar 

  • Woodman JD, Cooper PD, Haritos VS (2007) Effects of temperature and oxygen availability on water loss and carbon dioxide release in two sympatric saproxylic invertebrates. Comp Biochem Physiol A Mol Integr Physiol 147:514–520

    PubMed  Google Scholar 

  • Zhang Z-Q (2011) Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness. Zootaxa 3148:1–237

    Google Scholar 

  • Zhang Z-Q (2013) Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness (Addenda 2013). Zootaxa 3703:1–82

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Mayer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Wien

About this chapter

Cite this chapter

Mayer, G., Franke, F.A., Treffkorn, S., Gross, V., de Sena Oliveira, I. (2015). Onychophora. In: Wanninger, A. (eds) Evolutionary Developmental Biology of Invertebrates 3. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1865-8_4

Download citation

Publish with us

Policies and ethics