Skip to main content
Log in

Formation of the arthropod labrum by fusion of paired and rotated limb-bud-like primordia

  • Original Article
  • Published:
Zoomorphology Aims and scope Submit manuscript

Abstract

The nature and origin of the arthropod labrum is a matter much under dispute. We show here that in Tribolium castaneum (Herbst, 1797) the labrum develops from two individual primordia, termed labral buds. Expression of the genes decapentaplegic (dpp) and wingless (wg) in these buds is identical to the buds of the metameric appendages (e.g. thoracic legs), except that the patterns are reversed. We propose that this reversal is the result of the rotation of the labral buds through an angle of approximately 180°. We also for the first time study dpp and wg expression in the fully developed labrum of older embryonic stages. Here, gene expression patterns show that the labrum proper is formed by fusion of the labral buds along their dorsal sides, while their ventral sides are facing outward forming the lateral sides of the fused labrum. Furthermore, we show that there are very similar patterns in another arthropod species, the spider Cupiennius salei (Keyserling, 1877), although in this species the labrum develops as a single structure and not from two separate primordia. However, in C. salei the expression of engrailed is also reversed in addition to the reversal of dpp and wg expression: engrailed is expressed in the anterior half of the labrum, and not in the posterior half like in the remaining appendages. Our results suggest that the arthropod labrum is derived evolutionarily from paired limb-bud-like primordia by rotation and fusion, and that this process is recapitulated ontogenetically to a different extent in different arthropod species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Boyan GS, Williams JLD, Posser S, Bräunig P (2002) Morphological and molecular data argue for the labrum being non-apical, articulated, and the appendage of the intercalary segment in the locust. Arthropod Struct Dev 31:65–76

    Article  PubMed  CAS  Google Scholar 

  • Boyan GS, Bräunig P, Posser S, Williams JLD (2003) Embryonic development of the sensory innervation of the clypeo-labral complex: further support for serially homologous appendages in the locust. Arthropod Struct Dev 32:289–302

    Article  PubMed  CAS  Google Scholar 

  • Brook WJ, Cohen SM (1996) Antagonistic interactions between wingless and decapentaplegic responsible for dorsal-ventral pattern in the Drosophila leg. Science 273:1373–1377

    Article  PubMed  CAS  Google Scholar 

  • Brown SJ, Patel NH, Denell RE (1994) Embryonic expression of the single Tribolium engrailed homolog. Dev Genet 15:7–18

    Article  PubMed  CAS  Google Scholar 

  • Budd GE (2002) A palaentological solution to the arthropod head problem. Nature 417:271–275

    Article  PubMed  CAS  Google Scholar 

  • Budd GE, Telford MJ (2005) Evolution: along came a sea spider. Nature 437:1099–1102

    Article  PubMed  CAS  Google Scholar 

  • Butt FH (1960) Head development in the arthropods. Biol Rev 35:43–91

    Google Scholar 

  • Chaudonneret J (1950) La morphologie céphalique de Thermobia domestica (Packard), (Insecte, Apterygote, Thysanoure). Ann Sci Nat Zool 11:145–300

    Google Scholar 

  • Damen WGM (2002) Parasegmental organization of the spider embryo implies that the parasegment is an evolutionary conserved entity in arthropod embryogenesis. Development 129:1239–1250

    PubMed  CAS  Google Scholar 

  • Damen WGM, Tautz D (1999) Abdominal-B expression in a spider suggests a general role for Abdominal-B in specifying the genital structure. J Exp Zool (Mol Dev Evol) 285:85–91

    Article  CAS  Google Scholar 

  • Diaz-Benjumea FJ, Cohen B, Cohen SM (1994) Cell interaction between compartments establishes the proximal-distal axis of Drosophila legs. Nature 372:175–179

    Article  PubMed  CAS  Google Scholar 

  • Eriksson BJ, Budd GE (2000) Onychophoran cephalic nerves and their bearing on our understanding of head segmentation and stem-group evolution of Arthropoda. Arthropod Struct Dev 29:197–209

    Article  PubMed  CAS  Google Scholar 

  • Giorgianni MW, Patel NH (2004) Patterning of the branched head appendages in Schistocerca americana and Tribolium castaneum. Evol Dev 6:402–410

    Article  PubMed  Google Scholar 

  • Haas MS, Brown SJ, Beeman RW (2001a) Homeotic evidence for the appendicular origin of the labrum in Tribolium castaneum. Dev Genes Evol 211:96–102

    Article  CAS  Google Scholar 

  • Haas MS, Brown SJ, Beeman RW (2001b) Pondering the procephalon: the segmental origin of the labrum. Dev Genes Evol 211:89–95

    Article  CAS  Google Scholar 

  • Hanström B (1928) Vergleichende Anatomie des Nervensystems der wirbellosen Tiere. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Heymons R (1895) Die Segmentirung des Insectenkörpers [sic!]. Abh Königl Preuss Akad Wiss Berlin Phys Abh, Supplement, pp 1–39, 1 plate (separate)

  • Holmgren N (1916) Zur vergleichenden Anatomie der Gehirne von Polychaeten, Onychophoren, Xiphosuren, Arachniden, Crustaceen, Myriapoden und Insekten. K Svensk Vetensk Akad Handl 56:1–203

    Google Scholar 

  • Janet C (1899) Essai sur la constitution morphologique de la tête de l´insecte. Carré et Naud Éditeurs, Paris

    Google Scholar 

  • Jiang J, Struhl G (1996) Complementary and mutually exclusive activities of decapentaplegic and wingless organize axial patterning during Drosophila leg development. Cell 86:401–409

    Article  PubMed  CAS  Google Scholar 

  • Jockusch EL, Nulsen C, Newfeld SJ, Nagy LM (2000) Leg development in flies versus grasshoppers: differences in dpp expression do not lead to differences in the expression of downstream components of the leg patterning pathway. Development 127:1617–1626

    PubMed  CAS  Google Scholar 

  • Jockusch EL, Williams TA, Nagy LM (2004) The evolution of patterning of serially homologous appendages in insects. Dev Genes Evol 214:324–338

    Article  PubMed  Google Scholar 

  • Kraus O (2001) “Myriapoda” and the ancestry of the Hexapoda. Ann Soc Entomol Fr (N S) 37:105–127

    Google Scholar 

  • Lecuit T, Cohen SM (1997) Proximal-distal axis formation in the Drosophila leg. Nature 388:139–145

    Article  PubMed  CAS  Google Scholar 

  • Nagy LM, Carroll S (1994) Conservation of wingless patterning functions in the short-germ embryos of Tribolium castaneum. Nature 367:460–463

    Article  PubMed  CAS  Google Scholar 

  • Niwa N, Inoue Y, Nozawa A, Saito M, Misumi Y, Ohuchi H, Yoshioka H, Noji S (2000) Correlation of diversity of leg morphology in Gryllus bimaculatus (cricket) with divergence in dpp expression pattern during leg development. Development 127:4373–4381

    PubMed  CAS  Google Scholar 

  • Nulsen C, Nagy LM (1999) The role of wingless in the development of multibranched crustacean limbs. Dev Genes Evol 209:340–348

    Article  PubMed  CAS  Google Scholar 

  • Popadic A, Panganiban G, Rusch D, Shear WA, Kaufman TC (1998) Molecular evidence for the gnathobasic derivation of arthropod mandibles and for the appendicular origin of the labrum and other structures. Dev Genes Evol 208:142–150

    Article  PubMed  CAS  Google Scholar 

  • Prpic NM (2004) Homologs of wingless and decapentaplegic display a complex and dynamic expression profile during appendage development in the millipede Glomeris marginata (Myriapoda: Diplopoda) (online publication). Front Zool 1:6

    Article  PubMed  Google Scholar 

  • Prpic NM, Wigand B, Damen WGM, Klingler M (2001) Expression of dachshund in wild-type and Distal-less mutant Tribolium corroborates serial homologies in insect appendages. Dev Genes Evol 211:467–477

    Article  PubMed  CAS  Google Scholar 

  • Prpic NM, Janssen R, Wigand B, Klingler M, Damen WGM (2003) Gene expression in spider appendages reveals reversal of exd/hth spatial specificity, altered leg gap gene dynamics, and suggests divergent distal morphogen signaling. Dev Biol 264:119–140

    Article  PubMed  CAS  Google Scholar 

  • Remane A, Storch V, Welsch U (1975) Systematische Zoologie. Gustav Fischer Verlag, Stuttgart

    Google Scholar 

  • Sanchez-Salazar J, Pletcher MT, Bennett RL, Brown SJ, Dandamudi TJ, Denell RE, Doctor JS (1996) The Tribolium decapentaplegic gene is similar in sequence, structure, and expression to the Drosophila dpp gene. Dev Genes Evol 206:237–246

    Article  CAS  Google Scholar 

  • Schmidt-Ott U, Technau GM (1992) Expression of en and wg in the embryonic head and brain of Drosophila indicates a refolded band of seven segment remnants. Development 116:111–125

    PubMed  CAS  Google Scholar 

  • Scholtz G (1995) Head segmentation in Crustacea—an immunochemical study. Zoology 98:104–114

    Google Scholar 

  • Scholtz G (1997) Cleavage, germ band formation and head segmentation: the ground pattern of the Euarthropoda. In: Fortey RA, Thomas RH (eds) Arthropod relationships. Chapman & Hall, London, pp 317–332

    Google Scholar 

  • Scholtz G, Edgecombe GD (2005) Heads, Hox and the phylogenetic position of trilobites. In: Koenemann S, Jenner R (eds) Crustacea and arthropod relationships. Crustac Issues 16:139–165

  • Schoppmeier M, Damen WGM (2001) Double-stranded RNA interference in the spider Cupiennius salei: the role of Distal-less is evolutionarily conserved in arthropod appendage formation. Dev Genes Evol 211:76–82

    Article  PubMed  CAS  Google Scholar 

  • Sharov AG (1966) Basic arthropodan stock with special reference to insects. Pergamon Press, Oxford

    Google Scholar 

  • Siewing R (1963) Zum Problem der Arthropodenkopfsegmentierung. Zool Anz 170:429–468

    Google Scholar 

  • Simonnet F, Deutsch J, Queinnec E (2004) Hedgehog is a segment polarity gene in a crustacean and a chelicerate. Dev Genes Evol 214:537–545

    Article  PubMed  CAS  Google Scholar 

  • Snodgrass RE (1935) Principles of insect morphology. McGraw-Hill, New York

    Google Scholar 

  • Thomas RH, Telford MJ (1999) Appendage development in embryos of the oribatid mite Archegozetes longisetosus (Acari, Oribatei, Trhypochthoniidae). Acta Zool 80:193–200

    Article  Google Scholar 

  • Weber H (1952) Morphologie, Histologie und Entwicklungsgeschichte der Articulaten. Fortschr Zool NF 9:18–231

    Google Scholar 

  • Wiesmann R (1926) Chapters 3–5. In: Leuziger H, Wiesmann R, Lehmann FE (eds) Zur Kenntnis der Anatomie und Entwicklungsgeschichte der Stabheuschrecke Carausius morosus Br. Gustav Fischer Verlag, Jena

  • Wolff C, Sommer R, Schröder R, Glaser G, Tautz D (1995) Conserved and divergent expression aspects of the Drosophila segmentation gene hunchback in the short-germ band embryo of the flour beetle Tribolium. Development 121:4227–4236

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was conducted in the laboratories of Prof. Dr. Martin Klingler, Prof. Dr. Diethard Tautz, and Dr. Wim Damen. The authors are indebted to them and the members of their labs for the opportunity to participate in the group and are grateful for the technical, scientific and financial support provided. Both authors thank Johannes Scholten, Wim Damen, Gerhard Scholtz, Gregor Bucher and Graham Budd for helpful comments on the manuscript and/or the subject of the paper. The plasmids containing the T. castaneum gene fragments were kindly provided by Martin Klingler. The probes for the C. salei genes were kindly provided by Wim Damen. The work of M. A. K. was supported by an HFSP grant. The work of N. M. P. was supported by a grant from the Deutsche Forschungsgemeinschaft (DFG; grant TA 99/19-2)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikola-Michael Prpic.

Additional information

Communicated by G. Scholtz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kimm, M.A., Prpic, NM. Formation of the arthropod labrum by fusion of paired and rotated limb-bud-like primordia. Zoomorphology 125, 147–155 (2006). https://doi.org/10.1007/s00435-006-0019-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00435-006-0019-8

Keywords

Navigation