Skip to main content
Log in

A data set for validation of models of laser-induced incandescence from soot: temporal profiles of LII signal and particle temperature

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We measured spectrally and temporally resolved laser-induced incandescence signals from flame-generated soot at laser fluences of 0.01–3.5 J/cm2 and laser wavelengths of 532 and 1,064 nm. We recorded LII temporal profiles at 681.8 nm using a fast-gated detector and a spatially homogeneous and temporally smooth laser profile. Time-resolved emission spectra were used to identify and avoid spectral interferences and to infer soot temperatures. Soot temperatures reach a maximum of 4,415 ± 65 K at fluences ≥0.2 J/cm2 at 532 nm and 4,424 ± 80 K at fluences ≥0.3 J/cm2 at 1,064 nm. These temperatures are consistent with the sublimation temperature of C2 of 4,456.59 K. At fluences above 0.5 J/cm2 at 532 nm, the measured spectra yield an apparent higher temperature after the soot has fully vaporized but well within the laser pulse. This apparent temperature elevation at high fluence is explained by fluorescence interferences from molecules present in the flame. We also measured 3-color LII temporal profiles at detection wavelengths of 451.5, 681.8, and 854.8 nm. The temperatures inferred from these measurements agree well with those measured using spectrally resolved LII. The data discussed in this manuscript are archived as electronic supplementary material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. H. Horvath, J. Environ. Radioact. 51, 5 (2000)

    Article  Google Scholar 

  2. U.P. Kodavanti, C.F. Moyer, A.D. Ledbetter, M.C. Schladweiler, D.L. Costa, R. Hauser, D.C. Christiani, A. Nyska, Toxicol. Sci. 71, 237 (2003)

    Article  Google Scholar 

  3. R.J. Santoro, C.R. Shaddix, Laser-induced incandescence, in Applied Combustion Diagnostics, ed. by K. Kohse-Höinghaus, J.B. Jeffries (Taylor & Francis, New York, 2002), p. 252

    Google Scholar 

  4. C. Schulz, B.F. Kock, M. Hofmann, H.A. Michelsen, S. Will, B. Bougie, R. Suntz, G.J. Smallwood, Appl. Phys. B 83, 333 (2006)

    Article  ADS  Google Scholar 

  5. J. Reimann, S.A. Kuhlmann, S. Will, Appl. Phys. B 96, 583 (2009)

    Article  ADS  Google Scholar 

  6. H.A. Michelsen, F. Liu, B.F. Kock, H. Bladh, A. Boiarciuc, M. Charwath, T. Dreier, R. Hadef, M. Hofmann, J. Reimann, S. Will, P.-E. Bengtsson, H. Bockhorn, F. Foucher, K.P. Geigle, C. Mounaïm-Rousselle, C. Schulz, R. Stirn, B. Tribalet, R. Suntz, Appl. Phys. B 87, 503 (2007)

    Article  ADS  Google Scholar 

  7. M.W. Chase Jr., J. Phys. Chem. Ref. Data, Monograph 9 14, 535 (1998)

    Google Scholar 

  8. S. De Iuliis, F. Cignoli, G. Zizak, Appl. Opt. 44, 7414 (2005)

    Article  ADS  Google Scholar 

  9. S. Schraml, S. Dankers, K. Bader, S. Will, A. Leipertz, Combust. Flame 120, 439 (2000)

    Article  Google Scholar 

  10. F. Goulay, P.E. Schrader, L. Nemes, M.A. Dansson, H.A. Michelsen, Proc. Combust. Inst. 32, 963 (2009)

    Article  Google Scholar 

  11. F. Liu, D.R. Snelling, K.A. Thomson, G.J. Smallwood, Appl. Phys. B 96, 623 (2009)

    Article  ADS  Google Scholar 

  12. M. Commodo, S. Violi, A. D’Anna, A. D’Alessio, C. Allouis, F. Beretta, P. Minutolo, Combust. Sci. Technol. 179, 387 (2007)

    Article  Google Scholar 

  13. K. Hayashida, K. Amagai, K. Satoh, M. Arai, J. Eng. Gas Turbines Power 128, 241 (2006)

    Article  Google Scholar 

  14. R.L. Vander Wal, K.A. Jensen, M.Y. Choi, Combust. Flame 109, 399 (1997)

    Article  Google Scholar 

  15. R.L. Vander Wal, K.J. Weiland, Appl. Phys. B 59, 445 (1994)

    Article  ADS  Google Scholar 

  16. R.L. Vander Wal, Appl. Opt. 35, 6548 (1996)

    Article  ADS  Google Scholar 

  17. E.A. Rohlfing, J. Chem. Phys. 89, 6103 (1988)

    Article  ADS  Google Scholar 

  18. C.J. Damm, D. Lucas, R.F. Sawyer, C.P. Koshland, Proc. Combust. Inst. 29, 2767 (2002)

    Article  Google Scholar 

  19. R.L. Vander Wal, Combust. Sci. Technol. 126, 333 (1997)

    Article  Google Scholar 

  20. F. Goulay, P.E. Schrader, H.A. Michelsen, Appl. Phys. B 96, 613 (2009)

    Article  ADS  Google Scholar 

  21. M.A. Dansson, M. Boisselle, M.A. Linne, H.A. Michelsen, Appl. Opt. 46, 8095 (2007)

    Article  ADS  Google Scholar 

  22. G. Anstett, M. Nittmann, A. Borsutzky, R. Wallenstein, Appl. Phys. B 76, 833 (2003)

    Article  ADS  Google Scholar 

  23. A. Caprara, G.C. Reali, Opt. Quantum Elect. 24, S1001 (1992)

    Article  Google Scholar 

  24. A. Caprara, G.C. Reali, Opt. Lett. 17, 414 (1992)

    Article  ADS  Google Scholar 

  25. H.A. Michelsen, P.O. Witze, D. Kayes, S. Hochgreb, Appl. Opt. 42, 5577 (2003)

    Article  ADS  Google Scholar 

  26. H. Bladh, J. Johnsson, P.-E. Bengtsson, Appl. Phys. B 96, 645 (2009)

    Article  ADS  Google Scholar 

  27. H. Bladh, P.-E. Bengtsson, Appl. Phys. B 78, 241 (2004)

    Article  ADS  Google Scholar 

  28. B. Quay, T.-W. Lee, T. Ni, R.J. Santoro, Combust. Flame 97, 384 (1994)

    Article  Google Scholar 

  29. C.R. Shaddix, K.C. Smyth, Combust. Flame 107, 418 (1996)

    Article  Google Scholar 

  30. D. Snelling, F. Liu, G.J. Smallwood, Ö.L. Gülder, Proc. 34th Nat. Heat Transfer Conf. NHTC2000 (2000)

  31. J. Appel, B. Jungfleisch, M. Marquardt, R. Suntz, H. Bockhorn, Proc. Combust. Inst. 26, 2387 (1996)

    Google Scholar 

  32. T. Ni, J.A. Pinson, S. Gupta, R.J. Santoro, Appl. Opt. 34, 7083 (1995)

    Article  ADS  Google Scholar 

  33. N.P. Tait, D.A. Greenhalgh, Ber. Bunsenges. Phys. Chem. 97, 1619 (1993)

    Article  Google Scholar 

  34. C. Allouis, A. D’Alessio, C. Noviello, F. Beretta, Combust. Sci. Technol. 153, 51 (2000)

    Article  Google Scholar 

  35. J. Delhay, Y. Bouvier, E. Therssen, J.D. Black, P. Desgroux, Appl. Phys. B 81, 181 (2005)

    Article  ADS  Google Scholar 

  36. D.R. Snelling, G.J. Smallwood, F. Liu, Ö.L. Gülder, W.D. Bachalo, Appl. Opt. 44, 6773 (2005)

    Article  ADS  Google Scholar 

  37. H.R. Leider, O.H. Krikorian, D.A. Young, Carbon 11, 555 (1973)

    Article  Google Scholar 

  38. F. Goulay, L. Nemes, P.E. Schrader, H.A. Michelsen, Mol. Phys. 108, 1013 (2010)

    Article  ADS  Google Scholar 

  39. P.-E. Bengtsson, M. Aldén, Appl. Phys. B 60, 51 (1995)

    Article  ADS  Google Scholar 

  40. C. Schoemaecker-Moreau, E. Therssen, X. Mercier, J.F. Pauwels, P. Desgroux, Appl. Phys. B 78, 485 (2004)

    Article  ADS  Google Scholar 

  41. R. Puri, T.F. Richardson, R.J. Santoro, R.A. Dobbins, Combust. Flame 92, 320 (1993)

    Article  Google Scholar 

  42. R.L. Vander Wal, T.M. Ticich, A.B. Stephens, Combust. Flame 116, 291 (1999)

    Article  Google Scholar 

  43. C.M. Megaridis, R.A. Dobbins, Combust. Sci. Technol. 66, 1 (1989)

    Article  Google Scholar 

  44. R.A. Dobbins, C.M. Megaridis, Langmuir 3, 254 (1987)

    Article  Google Scholar 

  45. R.J. Santoro, J.H. Miller, Langmuir 3, 244 (1987)

    Article  Google Scholar 

  46. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic Press, New York, 1969)

    Google Scholar 

  47. J.C. Ku, K.-H. Shim, J. Quant. Spectrosc. Radiat. Transfer 47, 201 (1992)

    Article  ADS  Google Scholar 

  48. J.C. Ku, K.-H. Shim, J. Heat Transfer 113, 953 (1991)

    Article  Google Scholar 

  49. K.A. Fuller, W.C. Malm, S.M. Kreidenweis, J. Geophys. Res. 104, 15 (1999)

    Article  Google Scholar 

  50. A. Boiarciuc, F. Foucher, C. Mounaïm-Rousselle, Appl. Phys. B 83, 413 (2006)

    Article  ADS  Google Scholar 

  51. S. De Iuliis, F. Migliorini, F. Cignoli, G. Zizak, Appl. Phys. B 83, 397 (2006)

    Article  ADS  Google Scholar 

  52. D.R. Snelling, K.A. Thomson, F. Liu, G.J. Smallwood, Appl. Phys. B 96, 657 (2009)

    Article  ADS  Google Scholar 

  53. S. di Stasio, P. Massoli, Meas. Sci. Technol. 5, 1453 (1994)

    Article  ADS  Google Scholar 

  54. H.A. Michelsen, J. Chem. Phys. 118, 7012 (2003)

    Article  ADS  Google Scholar 

  55. H.A. Michelsen, P.E. Schrader, F. Goulay, Carbon 48, 2175 (2010)

    Article  Google Scholar 

  56. F.J. Weinberg, Optics of Flames (Butterworths, London, 1963)

    Google Scholar 

  57. D. Snelling, K.A. Thomson, G.J. Smallwood, Ö.L. Gülder, Appl. Opt. 38, 2478 (1999)

    Article  ADS  Google Scholar 

  58. S. De Iuliis, F. Migliorini, F. Cignoli, G. Zizak, Proc. Combust. Inst. 31, 869 (2007)

    Article  Google Scholar 

  59. H. Chang, T.T. Charalampopoulos, Proc. R. Soc. London, A 430, 577 (1990)

    Article  ADS  Google Scholar 

  60. D.R. Snelling, F. Liu, G.J. Smallwood, Ö.L. Gülder, Combust. Flame 136, 180 (2004)

    Article  Google Scholar 

  61. S.S. Krishnan, K.-C. Lin, G.M. Faeth, J. Heat Transfer 123, 331 (2001)

    Article  Google Scholar 

  62. J. Yon, R. Lemaire, E. Therssen, P. Desgroux, A. Coppalle, K.F. Ren, Appl. Phys. B 104, 253 (2011)

    Article  ADS  Google Scholar 

  63. Ü.Ö. Köylü, Combust. Flame 109, 488 (1996)

    Article  Google Scholar 

  64. Ü.Ö. Köylü, G.M. Faeth, J. Heat Transfer 118, 415 (1996)

    Article  Google Scholar 

  65. S.S. Krishnan, K.-C. Lin, G.M. Faeth, J. Heat Transfer 122, 517 (2000)

    Article  Google Scholar 

  66. M. Schnaiter, H. Horvath, O. Möhler, K.-H. Naumann, H. Saathoff, O.W. Schöck, J. Aerosol Sci. 34, 1421 (2003)

    Article  Google Scholar 

  67. F. Goulay, P.E. Schrader, H.A. Michelsen, Appl. Phys. B 100, 655 (2010)

    Article  ADS  Google Scholar 

  68. Z.G. Habib, P. Vervisch, Combust. Sci. Technol. 59, 261 (1988)

    Article  Google Scholar 

  69. G. Cléon, T. Amodeo, A. Faccinetto, P. Desgroux, Appl. Phys. B 104, 297 (2011)

    Article  ADS  Google Scholar 

  70. E. Therssen, Y. Bouvier, C. Schoemaecker-Moreau, X. Mercier, P. Desgroux, M. Ziskind, C. Focsa, Appl. Phys. B 89, 417 (2007)

    Article  ADS  Google Scholar 

  71. H.A. Michelsen, P.E. Schrader, F. Goulay, Carbon 50, 740 (2012)

    Article  Google Scholar 

  72. A. Leipertz, F. Ossler, M. Aldén, Polycyclic aromatic hydrocarbons and soot diagnostics by optical techniques, in Applied Combustion Diagnostics, ed. by K. Kohse-Höinghaus, J.B. Jeffries (Taylor & Francis, New York, 2002), p. 359

    Google Scholar 

  73. K.C. Smyth, C.R. Shaddix, D.A. Everest, Combust. Flame 111, 185 (1997)

    Article  Google Scholar 

  74. M. Alfè, B. Apicella, A. Tregrossi, A. Ciajolo, Carbon 46, 2059 (2008)

    Article  Google Scholar 

  75. D. Eastwood, R.L. Lidberg, M.S. Dresselhaus, Chem. Mater. 6, 211 (1994)

    Article  Google Scholar 

  76. F. Ossler, T. Metz, M. Aldén, Appl. Phys. B 72, 465 (2001)

    Article  ADS  Google Scholar 

  77. F. Ossler, T. Metz, M. Aldén, Appl. Phys. B 72, 479 (2001)

    Article  ADS  Google Scholar 

  78. F. Migliorini, S. De Iuliis, G. Zizak, Combust. Flame 153, 384 (2008)

    Article  Google Scholar 

  79. P. Desgroux, X. Mercier, K.A. Thomson, Proc. Combust. Inst. 34, 1713 (2013)

    Article  Google Scholar 

  80. H.A. Michelsen, Appl. Phys. B 83, 443 (2006)

    Article  ADS  Google Scholar 

  81. P.O. Witze, S. Hochgreb, D. Kayes, H.A. Michelsen, C.R. Shaddix, Appl. Opt. 40, 2443 (2001)

    Article  ADS  Google Scholar 

  82. H.A. Michelsen, A.V. Tivanski, M.K. Gilles, L.H. van Poppel, M.A. Dansson, P.R. Buseck, Appl. Opt. 46, 959 (2007)

    Article  ADS  Google Scholar 

  83. C.J. Kliewer, Y. Gao, T. Seeger, J. Kiefer, B.D. Patterson, T.B. Settersten, Proc. Combust. Inst. 33, 831 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

We thank László Nemes for his valuable comments on the manuscript. We also thank Daniel Strong for the rendition of the experimental setup shown in Fig. 1. This work was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, the Office of Basic Energy Sciences, the US Department of Energy. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the National Nuclear Security Administration under contract DE-AC04-94-AL85000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hope A. Michelsen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goulay, F., Schrader, P.E., López-Yglesias, X. et al. A data set for validation of models of laser-induced incandescence from soot: temporal profiles of LII signal and particle temperature. Appl. Phys. B 112, 287–306 (2013). https://doi.org/10.1007/s00340-013-5504-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5504-4

Keywords

Navigation