Skip to main content
Log in

2D aggregate sizing by combining laser-induced incandescence (LII) and elastic light scattering (ELS)

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The combination of laser-induced incandescence and elastic light scattering has been further developed to allow for a quantitative two-dimensional determination of characteristic properties of soot aggregates, namely radius of gyration R g and number N p of primary particles per aggregate. In demonstrating the principle of the method, we have in a first approach approximated the particle ensemble as monodisperse and used a structure factor with an exponential cut-off function. Nonetheless, experiments performed on a laminar premixed ethene flame demonstrate basically good agreement with observations from literature and data from electron microscopy on thermophoretically obtained samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. de Iuliis, F. Cignoli, G. Zizak, Appl. Opt. 44, 7414 (2005)

    Article  ADS  Google Scholar 

  2. K.A. Thomson, D.R. Snelling, G.J. Smallwood, F. Liu, Appl. Phys. B 83, 469 (2006)

    Article  ADS  Google Scholar 

  3. S.A. Kuhlmann, J. Reimann, S. Will, J. Aerosol Sci. 37, 1696 (2006)

    Article  Google Scholar 

  4. P. Desgroux, X. Mercier, B. Lefort, R. Lemaire, E. Therssen, J.F. Pauwels, Combust. Flame 155, 289 (2008)

    Article  Google Scholar 

  5. M. Hofmann, B.F. Kock, T. Dreier, H. Jander, C. Schulz, Appl. Phys. B 90, 629 (2008)

    Article  ADS  Google Scholar 

  6. R. Ryser, T. Gerber, T. Dreier, Combust. Flame 156 (2009)

  7. R.J. Santoro, H.G. Semerjian, R.A. Dobbins, Combust. Flame 51, 203 (1983)

    Article  Google Scholar 

  8. R.J. Santoro, T.T. Yeh, J.J. Horvath, H.G. Semerjian, Combust. Sci. Technol. 53, 89 (1987)

    Article  Google Scholar 

  9. S. Gangopadhyay, I. Elminyawi, C.M. Sorensen, Appl. Opt. 30, 4859 (1991)

    Article  ADS  Google Scholar 

  10. R. Puri, T.F. Richardson, R.J. Santoro, R.A. Dobbins, Combust. Flame 92, 320 (1993)

    Article  Google Scholar 

  11. C. Oh, C.M. Sorensen, J. Aerosol Sci. 28, 937 (1997)

    Article  Google Scholar 

  12. S. Will, S. Schraml, A. Leipertz, Opt. Lett. 20, 2342 (1995)

    Article  ADS  Google Scholar 

  13. S. Will, S. Schraml, A. Leipertz, Proc. Combust. Inst. 26, 2277 (1996)

    Google Scholar 

  14. R.J. Santoro, C.R. Shaddix, in Applied Combustion Diagnostics, ed. by K. Kohse-Höinghaus, J.B. Jeffries (Taylor & Francis, London, 2002), pp. 252–286

    Google Scholar 

  15. C. Schulz, B. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, G. Smallwood, Appl. Phys. B 83, 333 (2006)

    Article  ADS  Google Scholar 

  16. H.A. Michelsen, F. Liu, B.F. Kock, H. Bladh, A. Boiarciuc, M. Charwath, T. Dreier, R. Hadef, M. Hofmann, J. Reimann, S. Will, P.E. Bengtsson, H. Bockhorn, F. Foucher, K.P. Geigle, C. Mounaïm-Rousselle, C. Schulz, R. Stirn, B. Tribalet, R. Suntz, Appl. Phys. B 87, 503 (2007)

    Article  ADS  Google Scholar 

  17. C.M. Sorensen, Aerosol Sci. Technol. 35, 648 (2001)

    Article  Google Scholar 

  18. A.R. Jones, in Light Scattering Reviews, ed. by A.A. Kokhanovsky (Springer, Berlin, 2006), pp. 393–444

    Chapter  Google Scholar 

  19. H. Bladh, J. Johnsson, P.E. Bengtsson, Appl. Phys. B 90, 109 (2008)

    Article  ADS  Google Scholar 

  20. J. Reimann, S.A. Kuhlmann, S. Will, Combust. Flame 153, 650 (2008)

    Article  Google Scholar 

  21. T.L. Farias, Ü.Ö. Köylü, M.G. Carvalho, Appl. Opt. 35, 6560 (1996)

    Article  ADS  Google Scholar 

  22. G. Wang, C.M. Sorensen, Appl. Opt. 41, 4645 (2002)

    Article  ADS  Google Scholar 

  23. S.R. Forrest, T.A. Witten Jr., J. Phys. A: Math. Gen. 12, L109 (1979)

    Article  ADS  Google Scholar 

  24. R. Jullien, R. Botet, Aggregation and Fractal Aggregates (World Scientific, Singapore, 1987)

    MATH  Google Scholar 

  25. R.A. Dobbins, C.M. Megaridis, Langmuir 3, 254 (1987)

    Article  Google Scholar 

  26. Ü.Ö. Köylü, Y. Xing, D.E. Rosner, Langmuir 11, 4848 (1995)

    Article  Google Scholar 

  27. C.M. Sorensen, J. Cai, N. Lu, Langmuir 8, 2064 (1992)

    Article  Google Scholar 

  28. M.E. Fisher, R.J. Burford, Phys. Rev. 156, 583 (1967)

    Article  ADS  Google Scholar 

  29. R.D. Mountain, G.W. Mulholland, Langmuir 4, 1321 (1988)

    Article  Google Scholar 

  30. M.Y. Lin, R. Klein, H.M. Lindsay, D.A. Weitz, R.C. Ball, P. Meakin, J. Colloid Interface Sci. 137, 263 (1990)

    Article  Google Scholar 

  31. Ü.Ö. Köylü, G.M. Faeth, T.L. Farias, M.G. Carvalho, Combust. Flame 100, 621 (1995)

    Article  Google Scholar 

  32. A.M. Brasil, T.L. Farias, M.G. Carvalho, J. Aerosol Sci. 30, 1379 (1999)

    Article  Google Scholar 

  33. C.M. Sorensen, G.D. Feke, Aerosol Sci. Technol. 25, 328 (1996)

    Article  Google Scholar 

  34. S. di Stasio, P. Massoli, Meas. Sci. Technol. 5, 1453 (1994)

    Article  ADS  Google Scholar 

  35. T. Fu, X. Cheng, Z. Yang, Appl. Opt. 47, 6112 (2008)

    Article  ADS  Google Scholar 

  36. R.M. Pon, J.P. Hessler, Appl. Opt. 23, 975 (1984)

    Article  ADS  Google Scholar 

  37. S. Schraml, S. Dankers, K. Bader, S. Will, A. Leipertz, Combust. Flame 120, 439 (2000)

    Article  Google Scholar 

  38. S.S. Krishnan, K.C. Lin, G.M. Faeth, J. Heat Transfer. 123, 331 (2001)

    Article  Google Scholar 

  39. Shardanand, A.D. Prasad Rao, NASA Technical Note, TN D-8442 (1977)

  40. T. Grosges, B. Piraux, R. Shakeshaft, Phys. Rev. A 59, 3088 (1999)

    Article  ADS  Google Scholar 

  41. W.H. Beck, E. Stockman, S.H. Zaidi, R.B. Miles, 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, AIAA 2006-835 (2006)

  42. M. Sneep, W. Ubachs, J. Quant. Spectrosc. Radiat. Transfer. 92, 293 (2005)

    Article  ADS  Google Scholar 

  43. F. Xu, P.B. Sunderland, G.M. Faeth, Combust. Flame 108, 471 (1997)

    Article  Google Scholar 

  44. A. Malarski, F. Beyrau, A. Leipertz, J. Raman Spectrosc. 36, 102 (2005)

    Article  ADS  Google Scholar 

  45. S.P. Kearney, M.N. Jackson, AIAA J. 45, 2947 (2007)

    Article  ADS  Google Scholar 

  46. T. Lehre, B. Jungfleisch, R. Suntz, H. Bockhorn, Appl. Opt. 42 (2003)

  47. C.M. Sorensen, J. Cai, N. Lu, Appl. Opt. 31, 6547 (1992)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Will.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reimann, J., Kuhlmann, SA. & Will, S. 2D aggregate sizing by combining laser-induced incandescence (LII) and elastic light scattering (ELS). Appl. Phys. B 96, 583–592 (2009). https://doi.org/10.1007/s00340-009-3546-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-009-3546-4

PACS

Navigation