Skip to main content
Log in

Modeling laser-induced incandescence of soot: a summary and comparison of LII models

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We have performed a comparison of ten models that predict the temporal behavior of laser-induced incandescence (LII) of soot. In this paper we present a summary of the models and comparisons of calculated temperatures, diameters, signals, and energy-balance terms. The models were run assuming laser heating at 532 nm at fluences of 0.05 and 0.70 J/cm2 with a laser temporal profile provided. Calculations were performed for a single primary particle with a diameter of 30 nm at an ambient temperature of 1800 K and a pressure of 1 bar. Preliminary calculations were performed with a fully constrained model. The comparison of unconstrained models demonstrates a wide spread in calculated LII signals. Many of the differences can be attributed to the values of a few important parameters, such as the refractive-index function E(m) and thermal and mass accommodation coefficients. Constraining these parameters brings most of the models into much better agreement with each other, particularly for the low-fluence case. Agreement among models is not as good for the high-fluence case, even when selected parameters are constrained. The reason for greater variability in model results at high fluence appears to be related to solution approaches to mass and heat loss by sublimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.E. Dec, SAE Paper 920115 (1992)

  2. J.E. Dec, A.O. zur Loye, D.L. Siebers, SAE Paper 910224 (1991)

  3. C. Espey, J.E. Dec, SAE Paper 930971 (1993)

  4. N.P. Tait, D.A. Greenhalgh, Ber. Bunsenges. Phys. Chem. 97, 1619 (1993)

    Google Scholar 

  5. R.L. Vander Wal, D.L. Dietrich, Appl. Opt. 34, 1103 (1995)

    ADS  Google Scholar 

  6. R.L. Vander Wal, K.J. Weiland, Appl. Phys. B 59, 445 (1994)

    Article  ADS  Google Scholar 

  7. C. Crua, D.A. Kennaird, M.R. Heikal, Combust. Flame 135, 475 (2003)

    Article  Google Scholar 

  8. M.D. Smooke, M.B. Long, B.C. Connelly, M.B. Colket, R.J. Hall, Combust. Flame 143, 613 (2005)

    Article  Google Scholar 

  9. C. Schoemaecker Moreau, E. Therssen, X. Mercier, J.F. Pauwels, P. Desgroux, Appl. Phys. B 78, 485 (2004)

    Article  ADS  Google Scholar 

  10. T. Schittkowski, B. Mewes, D. Brüggemann, Phys. Chem. Chem. Phys. 4, 2063 (2002)

    Article  Google Scholar 

  11. T. Ni, J.A. Pinson, S. Gupta, R.J. Santoro, Appl. Opt. 34, 7083 (1995)

    ADS  Google Scholar 

  12. C.R. Shaddix, K.C. Smyth, Combust. Flame 107, 418 (1996)

    Article  Google Scholar 

  13. A. Boiarciuc, F. Foucher, C. Mounaïm-Rousselle, Appl. Phys. B 83, 413 (2006)

    Article  ADS  Google Scholar 

  14. A.C. Eckbreth, J. Appl. Phys. 48, 4473 (1977)

    Article  ADS  Google Scholar 

  15. R.W. Weeks, W.W. Duley, J. Appl. Phys. 45, 4661 (1974)

    Article  ADS  Google Scholar 

  16. L.A. Melton, Appl. Opt. 23, 2201 (1984)

    ADS  Google Scholar 

  17. C.J. Dasch, Appl. Opt. 23, 2209 (1984)

    ADS  Google Scholar 

  18. D.L. Hofeldt, SAE Paper 930079 (1993)

  19. S. Will, S. Schraml, A. Leipertz, Opt. Lett. 20, 2342 (1995)

    ADS  Google Scholar 

  20. S. Will, S. Schraml, K. Bader, A. Leipertz, Appl. Opt. 37, 5647 (1998)

    Article  ADS  Google Scholar 

  21. B. Mewes, J.M. Seitzman, Appl. Opt. 36, 709 (1997)

    Article  ADS  Google Scholar 

  22. P. Roth, A.V. Filippov, J. Aerosol Sci. 27, 95 (1996)

    Article  Google Scholar 

  23. A.V. Filippov, M.W. Markus, P. Roth, J. Aerosol Sci. 30, 71 (1999)

    Article  Google Scholar 

  24. S. Schraml, S. Dankers, K. Bader, S. Will, A. Leipertz, Combust. Flame 120, 439 (2000)

    Article  Google Scholar 

  25. C. Allouis, F. Rosano, F. Beretta, A. D’Alessio, Meas. Sci. Technol. 13, 401 (2002)

    Article  ADS  Google Scholar 

  26. T. Lehre, B. Jungfleisch, R. Suntz, H. Bockhorn, Appl. Opt. 42, 2021 (2003)

    Article  ADS  Google Scholar 

  27. T. Lehre, H. Bockhorn, B. Jungfleisch, R. Suntz, Chemosphere 51, 1055 (2003)

    Article  Google Scholar 

  28. B.F. Kock, T. Eckhardt, P. Roth, Proc. Combust. Inst. 29, 2775 (2002)

    Article  Google Scholar 

  29. B.F. Kock, C. Kayan, J. Knipping, H.R. Orthner, P. Roth, Proc. Combust. Inst. 30, 1689 (2005)

    Article  Google Scholar 

  30. B.F. Kock, B. Tribalet, C. Schulz, P. Roth, Combust. Flame 147, 79 (2006)

    Article  Google Scholar 

  31. V. Krüger, C. Wahl, R. Hadef, K.P. Geigle, W. Stricker, M. Aigner, Meas. Sci. Technol. 16, 1477 (2005)

    Article  ADS  Google Scholar 

  32. J. Appel, B. Jungfleisch, M. Marquardt, R. Suntz, H. Bockhorn, Proc. Combust. Inst. 26, 2387 (1996)

    Google Scholar 

  33. K.R. McManus, J.H. Frank, M.G. Allen, W.T. Rawlins, Proc. AIAA 36, 98 (1998)

    Google Scholar 

  34. D. Snelling, F. Liu, G.J. Smallwood, Ö.L. Gülder, in Proc. 34th Natl. Heat Transfer Conf. (NHTC2000-12132), Pittsburgh, Pennsylvania, USA, 2000

  35. G.J. Smallwood, D. Snelling, F. Liu, Ö.L. Gülder, J. Heat Transfer 123, 814 (2001)

    Article  Google Scholar 

  36. H.A. Michelsen, J. Chem. Phys. 118, 7012 (2003)

    Article  ADS  Google Scholar 

  37. H. Bladh, P.-E. Bengtsson, Appl. Phys. B 78, 241 (2004)

    Article  ADS  Google Scholar 

  38. D.R. Snelling, F. Liu, G.J. Smallwood, Ö.L. Gülder, Combust. Flame 136, 180 (2004)

    Article  Google Scholar 

  39. F. Liu, K.J. Daun, D.R. Snelling, G.J. Smallwood, Appl. Phys. B 83, 355 (2006)

    Article  ADS  Google Scholar 

  40. F. Liu, M. Yang, F.A. Hill, D.R. Snelling, G.J. Smallwood, Appl. Phys. B 83, 383 (2006)

    Article  ADS  Google Scholar 

  41. V. Beyer, D.A. Greenhalgh, Appl. Phys. B 83, 455 (2006)

    Article  ADS  Google Scholar 

  42. C. Schulz, B.F. Kock, M. Hofmann, H.A. Michelsen, S. Will, B. Bougie, R. Suntz, G.J. Smallwood, Appl. Phys. B 83, 333 (2006)

    Article  ADS  Google Scholar 

  43. http://www.vug.uni-duisburg.de/IVG/index.html

  44. http://www.vbt.uni-karlsruhe.de/specialtopic/2ndLIIWS2006/Internetauftritt1.htm

  45. B.J. McCoy, C.Y. Cha, Chem. Eng. Sci. 29, 381 (1974)

    Article  Google Scholar 

  46. M.W. Chase Jr., J. Phys. Chem. Ref. Data Monogr. 9 14, 535 (1998)

    Google Scholar 

  47. L.E. Fried, W.M. Howard, Phys. Rev. B 61, 8734 (1999)

    Article  ADS  Google Scholar 

  48. C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983)

    Google Scholar 

  49. Ü.Ö. Köylü, Combust. Flame 109, 488 (1996)

    Article  Google Scholar 

  50. Ü.Ö. Köylü, G.M. Faeth, J. Heat Transfer 118, 415 (1996)

    Article  Google Scholar 

  51. H.R. Leider, O.H. Krikorian, D.A. Young, Carbon 11, 555 (1973)

    Article  Google Scholar 

  52. E.R.G. Eckert, R.M. Drake Jr., Analysis of Heat and Mass Transfer (McGraw-Hill, New York, 1972)

    MATH  Google Scholar 

  53. W.M. Rohsenow, H.Y. Choi, Heat, Mass, and Momentum Transfer (Prentice-Hall, Englewood Cliffs, NJ, 1961)

    Google Scholar 

  54. A.V. Filippov, D.E. Rosner, Int. J. Heat Mass Transf. 43, 127 (2000)

    Article  MATH  Google Scholar 

  55. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1986)

    Google Scholar 

  56. S.C. Graham, J.B. Homer, J.L.J. Rosenfeld, Proc. R. Soc. London A 344, 259 (1975)

    ADS  Google Scholar 

  57. Degussa AG, Pigmentruße/Pigment Blacks, Technische Daten/Technical Data, Frankfurt

  58. W.H. Dalzell, A.F. Sarofim, J. Heat Transf. 91, 100 (1969)

    Google Scholar 

  59. K.C. Smyth, C.R. Shaddix, Combust. Flame 107, 314 (1996)

    Article  Google Scholar 

  60. H. Chang, T.T. Charalampopoulos, Proc. R. Soc. London A 430, 577 (1990)

    ADS  Google Scholar 

  61. S.S. Krishnan, K.-C. Lin, G.M. Faeth, J. Heat Transf. 123, 331 (2001)

    Article  Google Scholar 

  62. M.P. Hoffman, F.A. Rigby, AIAA J. 29, 927 (1991)

    Article  ADS  Google Scholar 

  63. L. Brewer, J.S. Kane, J. Phys. Chem. 59, 105 (1955)

    Article  Google Scholar 

  64. Landolt-Börnstein, Zahlenwerte und Funktionen aus Naturewissenschaften und Technik, vol. II/2a, 6th edn. (Springer, Berlin, 1960)

  65. J. Häger, D. Glatzer, H. Kuze, M. Fink, H. Walther, Surf. Sci. 374, 181 (1997)

    Article  Google Scholar 

  66. O. Leroy, J. Perrin, J. Jolly, M. Péalat, M. Lefebvre, J. Phys. D 30, 499 (1997)

    Article  ADS  Google Scholar 

  67. S.C. Saxena, R.K. Joshi, Thermal Accommodation and Absorption Coefficients of Gases (McGraw-Hill, New York, 1981)

    Google Scholar 

  68. S.-A. Kuhlmann, J. Reimann, S. Will, J. Aerosol Sci. 37, 1696 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H.A. Michelsen.

Additional information

PACS

65.80.+n; 78.20.Nv; 42.62.-b; 44.05.+e

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michelsen, H., Liu, F., Kock, B. et al. Modeling laser-induced incandescence of soot: a summary and comparison of LII models. Appl. Phys. B 87, 503–521 (2007). https://doi.org/10.1007/s00340-007-2619-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-007-2619-5

Keywords

Navigation