Skip to main content
Log in

Influence of rapid laser heating on the optical properties of in-flame soot

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

To understand the effect of rapid heating on the optical properties of in-flame soot and its potential influence on the laser-induced incandescence (LII) signal, the time-resolved extinction coefficient of soot is measured in diffusion and premixed flames during laser heating. Heating is performed using a 1064-nm pulsed laser with fluences ranging from 0.2 to 6.2 mJ/mm2. Extinction measurements are carried out using continuous-wave lasers at four different wavelengths. A rapid enhancement of extinction, by up to 10 % in the diffusion flame and 18 % in the premixed flame, occurs during laser heating most likely as a result of temperature-dependent optical properties and laser-induced thermal annealing of soot. The thermal expansion of flame gases causes a gradual decline of soot concentration for about 2 μs after the laser pulse. Significant loss of soot material by sublimation is observed at fluences as low as 1.03 and 2.06 mJ/mm2 for the diffusion and premixed flames, respectively. A secondary rise in extinction coefficient is observed from about 50 to 800 ns after the laser pulse at low monitoring wavelengths, attributed to the formation of light-absorbing gaseous species from the sublimated soot material. These effects may impact the LII signal and should be accounted for in LII analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. R.L. Vander Wal, M.Y. Choi, Carbon 37, 231 (1999)

    Article  Google Scholar 

  2. H.A. Michelsen, A.V. Tivanski, M.K. Gilles, L.H. van Poppel, M.A. Dansson, P.R. Buseck, Appl. Opt. 46, 959 (2007)

    Article  ADS  Google Scholar 

  3. D.R. Snelling, G.J. Smallwood, F. Liu, O.L. Gülder, W.D. Bachalo, Appl. Opt. 44, 6773 (2005)

    Article  ADS  Google Scholar 

  4. R.L. Vander Wal, T.M. Ticich, A.B. Stephens, Appl. Phys. B 67, 115 (1998)

    Article  ADS  Google Scholar 

  5. R.L. Vander Wal, K.A. Jensen, Appl. Opt. 37, 1607 (1998)

    Article  ADS  Google Scholar 

  6. K.A. Thomson, K.P. Geigle, M. Köhler, G.J. Smallwood, D.R. Snelling, Appl. Phys. B 104, 307 (2011)

    Article  ADS  Google Scholar 

  7. G.D. Yoder, P.K. Diwakar, D.W. Hahn, Appl. Opt. 44, 4211 (2005)

    Article  ADS  Google Scholar 

  8. T.L. Farias, Ü.Ö. Köylü, M.G. Carvalho, Appl. Opt. 35, 6560 (1996)

    Article  ADS  Google Scholar 

  9. F. Liu, in Proceedings of the 40th Thermophysics Conference, American Institute for Aeronautics and Astronautics, p. 1160, Seattle, Washington (2008)

  10. H.A. Michelsen, P.E. Schrader, F. Goulay, Carbon 48, 2175 (2010)

    Article  Google Scholar 

  11. J.C. Maxwell Garnett, Philos. Trans. R. Soc. Lond. 203, 385 (1904)

    Article  ADS  Google Scholar 

  12. C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983)

    Google Scholar 

  13. C.M. Sorensen, Aerosol Sci. Technol. 35, 648 (2001)

    Article  Google Scholar 

  14. P.O. Witze, S. Hochgreb, D. Kayes, H.A. Michelsen, C.R. Shaddix, Appl. Opt. 40, 2443 (2001)

    Article  ADS  Google Scholar 

  15. D.R. Snelling, O. Link, K.A. Thomson, G.J. Smallwood, Appl. Phys. B 104, 385 (2011)

    Article  ADS  Google Scholar 

  16. N.-E. Olofsson, J. Johnsson, H. Bladh, P.-E. Bengtsson, Appl. Phys. B 112, 333 (2013)

    Article  ADS  Google Scholar 

  17. C.J. Dasch, Appl. Opt. 23, 2209 (1984)

    Article  ADS  Google Scholar 

  18. H.A. Michelsen, P.O. Witze, D. Kayes, S. Hochgreb, Appl. Opt. 42, 5577 (2003)

    Article  ADS  Google Scholar 

  19. T. Ni, J.A. Pinson, S. Gupta, R.J. Santoro, Appl. Opt. 34, 7083 (1995)

    Article  ADS  Google Scholar 

  20. X. López-Yglesias, P.E. Schrader, H.A. Michelsen, J. Aerosol Sci. 75, 43 (2014)

    Article  Google Scholar 

  21. J. Zerbs, K.P. Geigle, O. Lammel, J. Hader, R. Stirn, R. Hadef, W. Meier, Appl. Phys. B 96, 683 (2009)

    Article  ADS  Google Scholar 

  22. Ü.Ö. Köylü, Combust. Flame 109, 488 (1997)

    Article  Google Scholar 

  23. S.S. Krishnan, K. Lin, G.M. Faeth, J. Heat Transf. 123, 331 (2001)

    Article  Google Scholar 

  24. S.S. Krishnan, K.-C. Lin, G.M. Faeth, J. Heat Transf. 122, 517 (2000)

    Article  Google Scholar 

  25. A.R. Coderre, K.A. Thomson, D.R. Snelling, M.R. Johnson, Appl. Phys. B 104, 175 (2011)

    Article  ADS  Google Scholar 

  26. F. Migliorini, K.A. Thomson, G.J. Smallwood, Appl. Phys. B 104, 273 (2011)

    Article  ADS  Google Scholar 

  27. O.L. Gülder, D.R. Snelling, R.A. Sawchuk, Symp. (Int.) Combust. 26, 2351 (1996)

    Article  Google Scholar 

  28. T.T. Charalampopoulos, H. Chang, B. Stagg, Fuel 68, 1173 (1989)

    Article  Google Scholar 

  29. D.R. Snelling, K.A. Thomson, F. Liu, G.J. Smallwood, Appl. Phys. B 96, 657 (2009)

    Article  ADS  Google Scholar 

  30. P. Minutolo, G. Gambi, A. D’Alessio, Symp. (Int.) Combust. 26, 951 (1996)

    Article  Google Scholar 

  31. Z.G. Habib, P. Vervisch, Combust. Sci. Technol. 59, 261 (1988)

    Article  Google Scholar 

  32. B.M. Crosland, M.R. Johnson, K.A. Thomson, Appl. Phys. B 102, 173 (2011)

    Article  ADS  Google Scholar 

  33. H.-H. Grotheer, K. Wolf, K. Hoffmann, Appl. Phys. B 104, 367 (2011)

    Article  ADS  Google Scholar 

  34. R.T. Meyer, A.W. Lynch, J.M. Freese, J. Phys. Chem. 77, 1083 (1973)

    Article  Google Scholar 

  35. H.R. Leider, O.H. Krikorian, D.A. Young, Carbon 11, 555 (1973)

    Article  Google Scholar 

  36. K. Sasaki, T. Wakasaki, S. Matsui, K. Kadota, J. Appl. Phys. 91, 4033 (2002)

    Article  ADS  Google Scholar 

  37. F. Goulay, L. Nemes, P.E. Schrader, H.A. Michelsen, Mol. Phys. 108, 1013 (2010)

    Article  ADS  Google Scholar 

  38. L. Gausset, G. Herzberg, A. Lagerqvist, B. Rosen, Astrophys. J. 142, 45 (1965)

    Article  ADS  Google Scholar 

  39. A.E. Douglas, Astrophys. J. 114, 467 (1951)

    Article  ADS  Google Scholar 

  40. A.J. Merer, Can. J. Phys. 45, 4103 (1967)

    Article  ADS  Google Scholar 

  41. E.A. Rohlfing, J. Chem. Phys. 89, 6103 (1988)

    Article  ADS  Google Scholar 

  42. F. Beretta, A. D’Alessio, A. D’Orsi, P. Minutolo, Combust. Sci. Technol. 85, 455 (1992)

    Article  Google Scholar 

  43. F. Goulay, P.E. Schrader, L. Nemes, M.A. Dansson, H.A. Michelsen, Proc. Combust. Inst. 32, 963 (2009)

    Article  Google Scholar 

  44. P.-E. Bengtsson, M. Aldén, Combust. Sci. Technol. 77, 307 (1991)

    Article  Google Scholar 

  45. L. Nemes, A.M. Keszler, C.G. Parigger, J.O. Hornkohl, H.A. Michelsen, V. Stakhursky, Appl. Opt. 46, 4032 (2007)

    Article  ADS  Google Scholar 

  46. D.R. Snelling, F. Liu, G.J. Smallwood, O.L. Gülder, Combust. Flame 136, 180 (2004)

    Article  Google Scholar 

  47. Ü.Ö. Köylü, G.M. Faeth, J. Heat Transf. 118, 415 (1996)

    Article  Google Scholar 

  48. H. Chang, T.T. Charalampopoulos, Proc. R. Soc. Lond. A 430, 577 (1990)

    Article  ADS  Google Scholar 

  49. H.A. Michelsen, J. Chem. Phys. 118, 7012 (2003)

    Article  ADS  Google Scholar 

  50. B. Zhao, K. Uchikawa, H. Wang, Proc. Combust. Inst. 31, 851 (2007)

    Article  Google Scholar 

  51. M. Alfè, B. Apicella, R. Barbella, J.-N. Rouzaud, A. Tregrossi, A. Ciajolo, Proc. Combust. Inst. 32, 697 (2009)

    Article  Google Scholar 

  52. T.C. Williams, C.R. Shaddix, K.A. Jensen, J.M. Suo-Anttila, J. Heat Mass Transf. 50, 1616 (2007)

    Article  Google Scholar 

  53. A. D’Alessio, A. D'Anna, A. D'Orsi, P. Minutolo, R. Barbella, A. Ciajolo, Symp. (Int.) Combust. 24, 973 (1992)

    Article  Google Scholar 

  54. R.A. Dobbins, R.A. Fletcher, W. Lu, Combust. Flame 100, 301 (1995)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of a Helmholtz/NRC collaborative partnership which made this research possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Thomson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 11,148 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saffaripour, M., Geigle, KP., Snelling, D.R. et al. Influence of rapid laser heating on the optical properties of in-flame soot. Appl. Phys. B 119, 621–642 (2015). https://doi.org/10.1007/s00340-015-6072-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-015-6072-6

Keywords

Navigation