Skip to main content
Log in

Examination of wavelength dependent soot optical properties of diesel and diesel/rapeseed methyl ester mixture by extinction spectra analysis and LII measurements

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The refractive index of soot is an essential parameter for its optical diagnostics. It is necessary for quantitative interpretation of LII (Laser Induced Incandescence) signals, light scattering or extinction measurements as well as for emissivity calculations. The most cited values have been determined by intrusive methods or without taking into account the soot size distribution and its specific morphology. In the present study, soot generated by the combustion of diesel and diesel/rapeseed methyl ester (RME) mixture (70% diesel and 30% RME) are extensively characterized by taking into account the morphology, the aggregate size distribution, the mass fraction and the spectral dispersion of light. The refractive index m for wavelengths λ between 300 and 1000 nm is determined for diesel and diester fuels by both in-situ and ex-situ methods. The ex-situ method is based on the interpretation of extinction spectra by taking into account soot sizes and fractal morphology with the RDG-FA (Rayleigh–Debye–Gans for Fractal Aggregate) theory. The in-situ approach is based on the comparison of the LII signals obtained with two different excitation wavelengths. The absorption function E(m) and the scattering function F(m) are examined. This study reveals similar optical properties of soot particles generated by both studied fuels even at ambient and flame temperatures. The function E(m) is shown to reach a maximum for λ=250 nm and to tend toward a plateau-like behavior close to E(m)=0.3 for higher wavelength (600<λ (nm)<1000). The function F(m) is found to be quite constant for 400<λ (nm)<1000 and equal to 0.31.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

Constant used for Single Scattering Albedo characterization

B m−1 :

Constant used for Single Scattering Albedo characterization

c ms−1 :

Speed of the light

C abs m2 :

Absorption parameter used in RDG-FA

C s kg m−3 :

Particles mass concentration (TEOM measurement)

C sca m2 :

Scattering parameter used in RDG-FA

D m:

Diaphragm/flame distance D in LII setup

d f :

Fractal dimension

D g m:

Soot particle gyration diameter

D p m:

Soot primary particles (monomer) diameter (mode of the distribution)

D m m:

Electrical mobility diameter of the particle (SMPS measurement)

e C:

Electron charge

E(m):

Absorption function, derive from optical index

E laser J:

Total energy of the laser pulse radiation

E p J:

Total energy absorbed by a single soot particle

F(m):

Scattering function, derive from optical index

f  laser Jm−2 :

Laser fluence (taken at 1/e 2)

f v :

Volume fraction

g i s−1 :

Damping constants of bound electrons

g c s−1 :

Damping constants of bound and free electrons

h J s:

Planck constant

H A W:

Absorbed power of a single soot particle

k B J K−1 :

Boltzmann constant

K e :

Dimensionless extinction coefficient

K ext m−1 :

Extinction coefficient

k f :

Fractal prefactor

l m:

Mean free path of conduction electrons

L m:

Optical path length

L a m:

Aggregate maximum projected length on TEM pictures

m=nik :

Optical index

m kg:

The effective electron mass

m v kg:

The electron mass in vacuum

M abs m−3 :

Mean number of primary particle/momentum used for absorption calculation

M sca m−3 :

Quasi-momentum used for scattering calculation

N agg m−3 :

Number of particles by unit volume

n c m−3 :

Free electron number density

n i m−3 :

Bound electron number density

n t m−3 :

Total number densities

N p :

Number of primary particles in an aggregate

Q abs :

Soot absorption efficiency

q λ W m−2 :

Laser irradiance

R g =D g /2 m:

Particle gyration radius

R p =D p /2 m:

Soot primary particle radius

S laser m2 :

Laser pulse cross-sectional area

T K:

Flame temperature

T p K:

Particle temperature

x,y,z m:

Spatial coordinates

Diester:

Diesel/RME mixture

Dil:

Dilution ratio of the aerosol sampling in flame

DLCA:

Diffusion Limited Cluster-Cluster Aggregation

FPS:

Fine Particle Sampling system

HAB:

Height Above the Burner

LIF:

Laser Induced Fluorescence

LII:

Laser Induced Incandescence

PAH:

Polycyclic Aromatic Hydrocarbon

RDG-FA:

Rayleigh-Debye-Gans for Fractal Aggregate

RME:

Rapeseed Methyl Ester

SMPS:

Scanning Mobility Particle Sizer

SSA:

Single Scattering Albedo

TEM:

Transmission Electron Microscopy

λ em m:

The particle emission wavelength

Δλ em m:

Detection spectral-range of the measured LII signal

Δt s:

Laser pulse duration

α corr :

Mass concentration correction factor

ε 0 :

Permittivity constant in vacuum

λ m:

Detection wavelength (ex-situ method)

λ laser, λ i , λ j m:

Wavelength of the laser light (in-situ method)

ρ kg m−3 :

The soot material density

σ λ m2 :

Absorption cross-section at a given wavelength

σ p m:

Standard deviation of the Gaussian primary particle size distribution

σ s m2 kg−1 :

Soot specific extinction

ω s−1 :

Excitation frequency

ω i s−1 :

Natural frequency of bound electrons

References

  1. T.C. Bond, R.W. Bergstrom, Aerosol Sci. Technol. 40, 27 (2006)

    Article  Google Scholar 

  2. C.M. Sorensen, Aerosol Sci. Technol. 35, 648 (2001)

    Google Scholar 

  3. K. Smyth, C. Shaddix, Combust. Flame 107, 314 (1996)

    Article  Google Scholar 

  4. W.H. Dalzell, A.F. Sarofim, J. Heat Transf. 91, 100 (1969)

    Article  Google Scholar 

  5. S. Lee, C. Tien, Symp., Int., Combust. 18, 1159 (1981)

    Article  Google Scholar 

  6. Z.G. Habib, P. Vervisch, Combust. Sci. Technol. 59, 261 (1988)

    Article  Google Scholar 

  7. T. Charalampopoulos, H. Chang, B. Stagg, Fuel 68, 1173 (1989)

    Article  Google Scholar 

  8. G. Schkolnik, D. Chand, A. Hoffer, M. Andreae, C. Erlick, E. Swietlicki, Y. Rudich, Atmos. Environ. 41, 1107 (2007)

    Article  Google Scholar 

  9. I. AyrancI, R. Vaillon, N. Selçuk, F. André, D. Escudié, J. Quant. Spectrosc. Radiat. Transf. 104, 266 (2007)

    Article  ADS  Google Scholar 

  10. J. Mullins, A. Williams, Fuel 66, 277 (1987)

    Article  Google Scholar 

  11. R. Julien, R. Botet, Aggregation and Fractal Aggregates (World Scientific, Singapore, 1987)

    Google Scholar 

  12. C.M. Megaridis, R.A. Dobbins, Combust. Sci. Technol. 71, 95 (1990)

    Article  Google Scholar 

  13. Ü.Ö. Köylü, G.M. Faeth, T.L. Farias, M.G. Carvalho, Combust. Flame 100, 621 (1995)

    Article  Google Scholar 

  14. R. Dobbins, G. Mulholland, N. Bryner, Atmos. Environ. 28, 889 (1994)

    Article  Google Scholar 

  15. S.S. Krishnan, K. Lin, G.M. Faeth, J. Heat Transf. 122, 517 (2000)

    Article  Google Scholar 

  16. P. Van-Hulle, M. Talbaut, M. Weill, A. Coppalle, Meas. Sci. Technol. 13, 375 (2002)

    Article  ADS  Google Scholar 

  17. F.X. Ouf, Caractérisation des aerosols émis lors d’un incendie. Thesis, IRSN-Université de Rouen, France (2006)

  18. M. Maugendre, J. Yon, A. Coppalle, F. Ouf, in Eurotherm—5th European Thermal-Sciences Conference, Eindhoven, the Netherlands (2008)

    Google Scholar 

  19. T. Williams, C. Shaddix, K. Jensen, J. Suo-Anttila, Int. J. Heat Mass Transf. 50, 1616 (2007)

    Article  Google Scholar 

  20. M. Schnaiter, H. Horvath, O. Möhler, K. Naumann, H. Saathoff, O.W. Schöck, J. Aerosol Sci. 34, 1421 (2003)

    Article  Google Scholar 

  21. S. Krishnan, K. Lin, G. Faeth, ASME J. Heat Transf. 123, 331 (2001)

    Article  Google Scholar 

  22. Ü.Ö. Köylü, G.M. Faeth, J. Heat Transf. 118, 415 (1996)

    Article  Google Scholar 

  23. H. Chang T.T. Charalampopoulos, Proc. Math. Phys. Sci. 430, 577 (1990)

    Article  Google Scholar 

  24. E. Therssen, Y. Bouvier, C. Schoemaecker-Moreau, X. Mercier, P. Desgroux, M. Ziskind, C. Focsa, Appl. Phys. B 89, 417 (2007)

    Article  ADS  Google Scholar 

  25. H. Michelsen, P. Schrader, F. Goulay, Carbon 48, 2175 (2010)

    Article  Google Scholar 

  26. D.R. Snelling, F. Liu, G.J. Smallwood, Ö.L. Gülder, Combust. Flame 136, 180 (2004)

    Article  Google Scholar 

  27. R. Lemaire, M. Maugendre, T. Schuller, E. Therssen, J. Yon, Rev. Sci. Instrum. 80, 105105 (2009)

    Article  ADS  Google Scholar 

  28. F. Ouf, J. Vendel, A. Coppalle, M. Weill, J. Yon, Combust. Sci. Technol. 180, 674 (2008)

    Article  Google Scholar 

  29. F. Ouf, J. Yon, P. Ausset, A. Coppalle, M. Maillé, Aerosol Sci. Technol. 44, 1005 (2010)

    Article  Google Scholar 

  30. K. Ren, F. Xu, X. Cai, J. Dorey, Chem. Eng. Commun. 197, 250 (2010)

    Article  Google Scholar 

  31. M.F. Chandler, Y. Teng, U.O. Koylu, Proc. Combust. Inst. 31, 2971 (2007)

    Article  Google Scholar 

  32. J. Lee, I. Altman, M. Choi, J. Aerosol Sci. 39, 418 (2008)

    Article  Google Scholar 

  33. R.A. Dobbins, C.M. Megaridis, Langmuir 3, 254 (1987)

    Article  Google Scholar 

  34. Ü. Köylü, G. Faeth, Combust. Flame 89, 140 (1992)

    Article  Google Scholar 

  35. J. Cai, N. Lu, C.M. Sorensen, Langmuir 9, 2861 (1993)

    Article  Google Scholar 

  36. K. Tian, F. Liu, K.A. Thomson, D.R. Snelling, G.J. Smallwood, D. Wang, Combust. Flame 138, 195 (2004)

    Article  Google Scholar 

  37. R. Lemaire, A. Faccinetto, E. Therssen, M. Ziskind, C. Focsa, P. Desgroux, Proc. Combust. Inst. 32, 737 (2009)

    Article  Google Scholar 

  38. H. Bladh, P. Bengtsson, J. Delhay, Y. Bouvier, E. Therssen, P. Desgroux, Appl. Phys. B 83, 423 (2006)

    Article  ADS  Google Scholar 

  39. C.M. Sorensen, G.D. Feke, Aerosol Sci. Technol. 25, 328 (1996)

    Article  Google Scholar 

  40. A.M. Brasil, T.L. Farias, M.G. Carvalho, J. Aerosol Sci. 30, 1379 (1999)

    Article  Google Scholar 

  41. A.M. Brasil, T.L. Farias, M.G. Carvalho, Aerosol Sci. Technol. 33, 440 (2000)

    Article  Google Scholar 

  42. C.M. Sorensen, G.C. Roberts, J. Colloid Interface Sci. 186, 447 (1997)

    Article  Google Scholar 

  43. K. Naumann, J. Aerosol Sci. 34, 1371 (2003)

    Article  Google Scholar 

  44. P. Wiltzius, Phys. Rev. Lett. 58, 710 (1987)

    Article  ADS  Google Scholar 

  45. G.M. Wang, C.M. Sorensen, Phys. Rev. E 60, 3036 (1999)

    Article  ADS  Google Scholar 

  46. U. Kätzel, M. Vorbau, M. Stintz, T. Gottschalk-Gaudig, H. Barthel, Part. Part. Syst. Charact. 25, 19 (2008)

    Article  Google Scholar 

  47. P. Gwaze, O. Schmid, H.J. Annegarn, M.O. Andreae, J. Huth, G. Helas, J. Aerosol Sci. 37, 820 (2006)

    Article  Google Scholar 

  48. M.Y. Choi, G.W. Mulholland, A. Hamins, T. Kashiwagi, Combust. Flame 102, 161 (1995)

    Article  Google Scholar 

  49. A. Tregrossi, R. Barbella, A. Ciajolo, M. Alfe, Combust. Sci. Technol. 179, 371 (2007)

    Article  Google Scholar 

  50. J.F. Widmann, J.C. Yang, T.J. Smith, S.L. Manzello, G.W. Mulholland, Combust. Flame 134, 119 (2003)

    Article  Google Scholar 

  51. G.W. Mulholland, M.Y. Choi, Symp., Int., Combust. 27, 1515 (1998)

    Article  Google Scholar 

  52. J. Wu, S. Krishnan, G. Faeth, ASME J. Heat Transf. 119, 230 (1997)

    Article  Google Scholar 

  53. J. Zhu, M.Y. Choi, G.W. Mulholland, S.L. Manzello, L.A. Gritzo, J. Suo-Anttila, Proc. Combust. Inst. 29, 2367 (2002)

    Article  Google Scholar 

  54. T.L. Farias, Ü.Ö. Köylü, M.G. Carvalho, Appl. Opt. 35, 6560 (1996)

    Article  ADS  Google Scholar 

  55. J. Yon, C. Roze, T. Girasole, A. Coppalle, L. Mees, Part. Part. Syst. Charact. 25, 54 (2008)

    Article  Google Scholar 

  56. R.K. Chakrabarty, H. Moosmüller, W.P. Arnott, M.A. Garro, J.G. Slowik, E.S. Cross, J. Han, P. Davidovits, T.B. Onasch, D.R. Worsnop, Appl. Opt. 46, 6990 (2007)

    Article  ADS  Google Scholar 

  57. G.J. Smallwood, D.T. Snelling, F. Liu, O.L. Gülder, J. Heat Transf. 123, 814 (2001)

    Article  Google Scholar 

  58. R. Lemaire, E. Therssen, J.F. Pauwels, P. Desgroux, in Combustion-Generated Fine Carbonaceous Particles, ed. by H. Bockhorn, A. D’Anna, A.F. Sarofim, H. Wang (KIT Scientific Publishing, Karlsruhe, 2009), p. 619

    Google Scholar 

  59. H. Michelsen, J. Chem. Phys. 118, 7012 (2003)

    Article  ADS  Google Scholar 

  60. C. Schulz, B.F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, G. Smallwood, Appl. Phys. B 83, 333 (2006)

    Article  ADS  Google Scholar 

  61. G. Zizak, F. Cignoli, G. Montas, S. Benecchi, R. Donde, Appl. Spectrosc. 1, 17 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Yon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yon, J., Lemaire, R., Therssen, E. et al. Examination of wavelength dependent soot optical properties of diesel and diesel/rapeseed methyl ester mixture by extinction spectra analysis and LII measurements. Appl. Phys. B 104, 253–271 (2011). https://doi.org/10.1007/s00340-011-4416-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-011-4416-4

Keywords

Navigation