Skip to main content
Log in

LaCl3 treatment improves Agrobacterium-mediated immature embryo genetic transformation frequency of maize

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

We report an optimized transformation system that uses a LaCl3 pretreatment (a Ca2+ channel blocker) for enhancing Agrobacterium-mediated infection of immature embryos and improving the genetic transformation frequency of maize.

Abstract

Agrobacterium-mediated genetic transformation of immature embryos is important for gene-function studies and molecular breeding of maize. However, the relatively low genetic transformation frequency remains a bottleneck for applicability of this method, especially on commercial scale. We report that pretreatment of immature embryos with LaCl3 (a Ca2+ channel blocker) improves the infection frequency of Agrobacterium tumefaciens, increases the proportion of positive callus, yields more positive regenerated plantlets, and increases the transformation frequency from 8.40 to 17.60% for maize. This optimization is a novel method for improving the frequency of plant genetic transformations mediated by Agrobacterium tumefaciens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmar S, Gill RA, Jung K, Faheem A, Qasim MU, Mubeen M, Zhou W (2020) Conventional and molecular techniques from simple breeding to speed breeding in crop plants: recent advances and future outlook. Int J Mol Sci 21:2590

    Article  CAS  Google Scholar 

  • Anand A, Bass SH, Wu E, Wang N, McBride KE, Annaluru N, Miller M, Hua M, Jones TJ (2018) An improved ternary vector system for Agrobacterium-mediated rapid maize transformation. Plant Mol Biol 97:187–200

    Article  CAS  Google Scholar 

  • Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60:379–406

    Article  CAS  Google Scholar 

  • Chen L, Zhang S, Beachy RN, Fauquet CM (1998) A protocol for consistent, large-scale production of fertile transgenic rice plants. Plant Cell Rep 18:25–31

    Article  Google Scholar 

  • Cho H, Winans SC (2005) Vira and Virg activate the Ti plasmid REPABC operon, elevating plasmid copy number in response to wound-released chemical signals. Proc Nat Acad Sci USA 102:14843–14848

    Article  CAS  Google Scholar 

  • Cho M, Wu E, Kwan J, Yu M, Banh J, Linn W, Anand A, Li Z, TeRonde S, Register JC, Jones TJ, Zhao Z (2014) Agrobacterium-mediated high-frequency transformation of an elite commercial maize (Zea mays L.) inbred line. Plant Cell Rep 33:1767–1777

    Article  CAS  Google Scholar 

  • Djamei A, Pitzschke A, Nakagami H, Rajh I, Hirt H (2007) Trojan horse strategy in Agrobacterium transformation: Abusing MAPK defense signaling. Science 318:453–456

    Article  CAS  Google Scholar 

  • Escobar MA, Dandekar AM (2003) Agrobacterium tumefaciens as an agent of disease. Trends Plant Sci 8:380–386

    Article  CAS  Google Scholar 

  • Frame BR, McMurray JM, Fonger TM, Main ML, Taylor KW, Torney FJ, Paz MM, Wang K (2006) Improved Agrobacterium-mediated transformation of three maize inbred lines using MS salts. Plant Cell Rep 25:1024–1034

    Article  CAS  Google Scholar 

  • Fromm ME, Taylor LP, Walbot V (1986) Stable transformation of maize after gene transfer by electroporation. Nature (london) 319:791–793

    Article  CAS  Google Scholar 

  • Golovkin MV, Abraham M, Morocz S, Bottka S, Feher A, Dudits D (1993) Production of transgenic maize plants by direct DNA uptake into embryogenic protoplasts. Plant Sci 90:41–52

    Article  CAS  Google Scholar 

  • Gómez-Gómez L (2004) Plant perception systems for pathogen recognition and defence. Mol Immunol 41:1055–1062

    Article  Google Scholar 

  • Grimsley N, Hohn T, Davies J, Hohn B (1987) Agrobacterium-mediated delivery of infectious maize streak virus into maize plants. Nature 325:177–179

    Article  CAS  Google Scholar 

  • Hiei Y, Komari T, Kubo T (1997) Transformation of rice mediated by Agrobacterium tumefaciens. Plant Mol Biol 35:205–218

    Article  CAS  Google Scholar 

  • Hiei Y, Ishida Y, Kasaoka K, Komari T (2006) Improved frequency of transformation in rice and maize by treatment of immature embryos with centrifugation and heat prior to infection with Agrobacterium tumefaciens. Plant Cell Tissue Organ Cult 87:233–243

    Article  Google Scholar 

  • Ishida Y, Saito H, Ohta S, Hiei Y, Komari T, Kumashiro T (1996) High efficiency transformation of maize (Zea mays L) mediated by Agrobacterium tumefaciens. Nat Biotechnol 14:745–750

    Article  CAS  Google Scholar 

  • Kaeppler HF, Somers DA (1994) DNA delivery into maize cell cultures using silicon carbide fbers. The maize handbook. Springer, New York, pp 610–613

    Chapter  Google Scholar 

  • Klein TM, Fromm M, Weissinger A, Tomes D, Schaaf S, Sletten M, Sanford JC (1988) Transfer of foreign genes into intact maize cells with high-velocity microprojectiles. Proc Natl Acad Sci USA 85:4305–4309

    Article  CAS  Google Scholar 

  • Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 48:251–275

    Article  CAS  Google Scholar 

  • Liu F, Cheng J, Liu X, Wang X (2021) High-throughput and accurate determination of transgene copy number and zygosity in transgenic maize: from DNA extraction to data analysis. Int J Mol Sci 22:12487

    Article  CAS  Google Scholar 

  • Liu Y, Zhang Z, Fu J, Wang G, Wang J, Liu Y (2017) Transcriptome analysis of maize immature embryos reveals the roles of cysteine in improving Agrobacterium infection efficiency. Front Plant Sci. https://doi.org/10.3389/fpls.2017.01778

    Article  PubMed  PubMed Central  Google Scholar 

  • Lowe K, Wu E, Wang N, Hoerster G, Hastings C, Cho M, Scelonge C, Lenderts B, Chamberlin M, Cushatt J, Wang L, Ryan L, Khan T, Chow-Yiu J, Hua W, Yu M, Banh J, Bao Z, Brink K, Igo E, Rudrappa B, Shamseer PM, Bruce W, Newman L, Shen B, Zheng P, Bidney D, Falco C, Register J, Zhao Z, Xu D, Jones T, Gordon-Kamm W (2016) Morphogenic regulators Baby boom and Wuschel2 improve monocot transformation. Plant Cell 28:1998–2015

    Article  CAS  Google Scholar 

  • Lowe K, La Rota M, Hoerster G, Hastings C, Wang N, Chamberlin M, Wu E, Jones T, Gordon-Kamm W (2018) Rapid genotype “independent” Zea mays L. (maize) transformation via direct somatic embryogenesis. In Vitro Cell Dev - PL 54:240–252

    Article  CAS  Google Scholar 

  • Ma L, Ye J, Yang Y, Lin H, Yue L, Luo J, Long Y, Fu H, Liu X, Zhang Y, Wang Y, Chen L, Kudla J, Wang Y, Han S, Song C, Guo Y (2019) The SOS2-SCaBP8 complex generates and fine-tunes an AtANN4-dependent calcium signature under salt stress. Dev Cell 48:697–709

    Article  CAS  Google Scholar 

  • Mookkan M, Nelson-Vasilchik K, Hague J, Zhang ZJ, Kausch AP (2017) Selectable marker independent transformation of recalcitrant maize inbred B73 and sorghum P898012 mediated by morphogenic regulators Baby boom and Wuschel2. Plant Cell Rep 36:1477–1491

    Article  CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:2002–2007

    Article  Google Scholar 

  • Salvo SAGD, Hirsch CN, Buell CR, Kaeppler SM, Kaeppler HF, Zhang X (2014) Whole transcriptome profiling of maize during early somatic embryogenesis reveals altered expression of stress factors and embryogenesis-related genes. PLOS One 9:e111407

    Article  Google Scholar 

  • Sheikholeslam SN, Weeks DP (1987) Acetosyringone promotes high-efficiency transformation of Arabidopsis thaliana explants by Agrobacterium tumefaciens. Plant Mol Biol 8:291–298

    Article  CAS  Google Scholar 

  • Sidorov V, Duncan D (2009) Agrobacterium-mediated maize transformation: immature embryos versus callus. In: Scott MP (ed) Methods in Molecular Biology, p 47

  • Sivanandhan G, Kapil Dev G, Theboral J, Selvaraj N, Ganapathi A, Manickavasagam M (2015) Sonication, vacuum infiltration and thiol compounds enhance the Agrobacterium-mediated transformation frequency of Withania somnifera (L.) Dunal. PLOS One 10:e124693

    Article  Google Scholar 

  • Toyota M, Spencer D, Sawai-Toyota S, Jiaqi W, Zhang T, Koo AJ, Howe GA, Gilroy S (2018) Glutamate triggers long-distance, calcium-based plant defense signaling. Science 361:1112–1115

    Article  CAS  Google Scholar 

  • Vega JM, Yu W, Kennon AR, Chen X, Zhang ZJ (2008) Improvement of Agrobacterium-mediated transformation in Hi-II maize (Zea mays) using standard binary vectors. Plant Cell Rep 27:297–305

    Article  CAS  Google Scholar 

  • Xing H, Dong L, Wang Z, Zhang H, Han C, Liu B, Wang X, Chen Q (2014) A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol 14:327

    Article  Google Scholar 

  • Yuan Z, Williams M (2012) A really useful pathogen, Agrobacterium tumefaciens. Plant Cell 24:112–1012

    PubMed  Google Scholar 

  • Zhang Q, Zhang Y, Lu M, Chai Y, Jiang Y, Zhou Y, Wang X, Chen Q (2019) A novel ternary vector system united with morphogenic genes enhances CRISPR/Cas delivery in maize. Plant Physiol 181:1441–1448

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant U1706201).

Author information

Authors and Affiliations

Authors

Contributions

MHL and YG conceived and designed the study. SNL and YLS conducted the experiments. FL conducted copy number analysis. SNL analyzed data. SNL, MHL, and YG wrote the manuscript. All the authors read and approved the manuscript.

Corresponding author

Correspondence to Minhui Lu.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare relevant to the contents of this article.

Additional information

Communicated by Yuree Lee.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1284 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Shi, Y., Liu, F. et al. LaCl3 treatment improves Agrobacterium-mediated immature embryo genetic transformation frequency of maize. Plant Cell Rep 41, 1439–1448 (2022). https://doi.org/10.1007/s00299-022-02867-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-022-02867-w

Keywords

Navigation