Skip to main content
Log in

Improvement of Agrobacterium-mediated transformation in Hi-II maize (Zea mays) using standard binary vectors

  • Genetic Transformation and Hybridization
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

High-frequency transformation of maize (Zea mays L.) using standard binary vectors is advantageous for functional genomics and other genetic engineering studies. Recent advances in Agrobacterium tumefaciens-mediated transformation of maize have made it possible for the public to transform maize using standard binary vectors without a need of the superbinary vector. While maize Hi-II has been a preferred maize genotype to use in various maize transformation efforts, there is still potential and need in further improving its transformation frequency. Here we report the enhanced Agrobacterium-mediated transformation of immature zygotic embryos of maize Hi-II using standard binary vectors. This improved transformation process employs low-salt media in combined use with antioxidant l-cysteine alone or l-cysteine and dithiothreitol (DTT) during the Agrobacterium infection stage. Three levels of N6 medium salts, 10, 50, and 100%, were tested. Both 10 and 50% salts were found to enhance the T-DNA transfer in Hi-II. Addition of DTT to the cocultivation medium also improves the T-DNA transformation. About 12% overall and the highest average of 18% transformation frequencies were achieved from a large number of experiments using immature embryos grown in various seasons. The enhanced transformation protocol established here will be advantageous for maize genetic engineering studies including transformation-based functional genomics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • An G, Ebert PR, Mitra A, Ha SB (1988) Binary vectors. In: Gelvin SB, Schilperoot RA (eds) Plant Mol Biology Manual. Martinus Nijhoff, Dordrecht, The Netherlands, pp A3:1–19

  • Armstrong CL (1999) The first decade of maize transformation: a review and future perspective. Maydica 44:101–109

    Google Scholar 

  • Armstrong CL, Green CE (1985) Establishment and maintenance of friable, embryogenic maize callus and the involvement of l-proline. Planta 164:207–214

    Article  CAS  Google Scholar 

  • Armstrong CL, Romero-Severson J, Hodges TK (1992) Improved tissue culture response of an elite maize inbred through backcross breeding, and identification of chromosomal regions important for regeneration by RFLP analysis. Theor Appl Genet 84:755–762

    Article  Google Scholar 

  • Cheng M, Fry JE, Pang S, Zhou H, Hironaka CM, Duncan DR, Conner TW, Wan Y (1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol 115:971–980

    PubMed  CAS  Google Scholar 

  • Chilton MD, Currier TC, Farrand SK, Bendich AJ, Gordon MP, Nester EW (1974) Agrobacterium tumefaciens DNA and PS8 bacteriophage DNA not detected in crown gall tumors. Proc Natl Acad Sci USA 71:3672–3676

    Article  PubMed  CAS  Google Scholar 

  • Chu CC, Wang CC, Sun CS, Hsu C, Yin KC, Chu CY, Bi FY (1975) Establishment of an high-frequency medium for anther culture of rice, through comparative experiments on the nitrogen sources. Sci Sin 18:659–668

    Google Scholar 

  • Dai S, Zheng P, Marmey P, Zhang S, Tian W, Chen S, Beachy RN, Fauquet C (2001) Comparative analysis of transgenic rice plants obtained by Agrobacterium-mediated transformation and particle bombardment. Mol Breed 7:25–33

    Article  CAS  Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version 2. Plant Mol Biol Rep 1:19–22

    Article  CAS  Google Scholar 

  • Der G, Everitt B (2001) A handbook of statistical analyses using SAS, 2nd edn. CRC, Boca Raton, p 376

    Google Scholar 

  • Dong Q, Lawrence CJ, Schlueter SD, Wilkerson MD, Kurtz S, Lushbough C, Brendel V (2005) Comparative plant genomics resources at Plant GDB. Plant Physiol 139:610–618

    Article  PubMed  CAS  Google Scholar 

  • Frame B, Shou H, Chikwamba R, Zhang Z, Xiang C, Fonger T, Pegg SE, Li B, Nettleton D, Pei D, Wang K (2002) Agrobacterium-mediated transformation of maize embryos using a standard binary vector system. Plant Physiol 129:13–22

    Article  PubMed  CAS  Google Scholar 

  • Frame BR, McMurray JM, Fonger TM, Main ML, Taylor KW, Torney FJ, Paz MM, Wang K (2006) Improved Agrobacterium-mediated transformation of three maize inbred lines using MS salts. Plant Cell Rep 25:1024–1034

    Article  PubMed  CAS  Google Scholar 

  • Fry J, Barnason A, Horsch RB (1987) Transformation of Brassica napus with Agrobacterium tumefaciens based vectors. Plant Cell Rep 6:321–325

    Article  CAS  Google Scholar 

  • Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA (1983) A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303:179–180

    Article  CAS  Google Scholar 

  • Hood EE, Helmer GL, Fraley RT, Chilton MD (1986) The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. J Bacteriol 168:1291–1301

    PubMed  CAS  Google Scholar 

  • Hu T, Metz S, Chay C, Zhou HP, Biest N, Chen G, Cheng M, Feng X, Radionenko M, Lu F, Fry J (2003) Agrobacterium-mediated large-scale transformation of wheat (Triticum aestivum L.) using glyphosate selection. Plant Cell Rep 21:1010–1019

    Article  PubMed  CAS  Google Scholar 

  • Ishida Y, Saito H, Ohta S, Hiei Y, Komari T, Kumashiro T (1996) High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nature Biotechnol 14:745–750

    Article  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Ke XY, McCormac AC, Harvey A, Lonsdale D, Chen DF, Elliot MC (2002) Manipulation of discriminatory T-DNA delivery by Agrobacterium into cells of immature embryos of barley and wheat. Euphytica 126:333–343

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Olhoft PM, Flagel LE, Donovan CM, Somers DA (2003) High-frequency soybean transformation using hygromycin B selection in the cotyledonary-node method. Planta 216:723–735

    PubMed  CAS  Google Scholar 

  • Olhoft P, Lin K, Galbraith J, Nielsen N, Somers D (2001) The role of thiol compounds in increasing Agrobacterium-mediated transformation of soybean cotyledonary-node cells. Plant Cell Rep 20:731–737

    Article  CAS  Google Scholar 

  • Olhoft P, Somers D (2001) l-cysteine increases Agrobacterium-mediated T-DNA delivery into soybean cotyledonary-node cells. Plant Cell Rep 20:706–711

    Article  CAS  Google Scholar 

  • Perl A, Lotan O, Abu-Abied A, Holland D (1996) Establishment of an Agrobacterium-mediated transformation system for grape (Vitis vinifera L.): the role of antioxidants during grape–Agrobacterium interactions. Nat Biotechnol 14:624–628

    Article  PubMed  CAS  Google Scholar 

  • Paz MM, Shou H, Z Guo, Zhang Z, Banerjee AK, Wang K (2004) Assessment of conditions affecting Agrobacterium-mediated soybean transformation using the cotyledonary node explant. Euphytica 136:167–179

    Article  CAS  Google Scholar 

  • Shou H, Frame BR, Whitham SA, Wang K (2004) Assessment of transgenic maize events produced by particle bombardment or Agrobacterium-mediated transformation. Mol Breed 13:201–208

    Article  CAS  Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    Article  PubMed  CAS  Google Scholar 

  • Travella S, Ross SM, Harden J, Everett C, Snape JW, Harwood WA (2005) A comparison of transgenic barley lines produced by particle bombardment and Agrobacterium-mediated techniques. Plant Cell Rep 23:780–789

    Article  PubMed  CAS  Google Scholar 

  • Yu W, Lamb JC, Han F, Birchler JA (2006) Telomere-mediated chromosomal truncation in maize. Proc Natl Acad Sci USA 103:17331–17336

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Subbarao S, Addae P, Shen A, Armstrong C, Peschke V, Gilbertson L (2003) Cre/lox-mediated marker gene excision in transgenic maize (Zea mays L.) plants. Theor Appl Genet 10:1157–1168

    Article  Google Scholar 

  • Zhang Z, Xing A, Staswick PE, Clemente TE (1999) The use of glufosinate as a selective agent in Agrobacterium-mediated transformation of soybean. Plant Cell Tiss Organ Cult 56:37–46

    Article  CAS  Google Scholar 

  • Zhao ZY, Gu W, Cai T, Pierce D (1999) Methods for Agrobacterium-mediated transformation. United States Patent No 5981840

  • Zhao ZY, Gu W, Cai T, Tagliani L, Hondred D, Bond D, Schroeder S, Rudert M, Pierce D (2002) High throughput genetic transformation mediated by Agrobacterium tumefaciens in maize. Mol Breed 8:323–333

    Article  Google Scholar 

  • Zeng P, Vadnais D, Zhang Z, Polacco J (2004) Refined glufosinate selection in Agrobacterium-mediated transformation of soybean [Glycine max (L.) Merr.]. Plant Cell Rep 22:478–482

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Regina Wamsley (from Zhanyuan J. Zhang’s laboratory) for her excellent technical assistance; CAMBIA (Australia) for providing pCAMBIA3301; Aventis CropScience (Research Triangle Park, NC, USA) for herbicide Liberty®, and James A. Birchler and Seth D. Findley (University of Missouri-Columbia) for a critical review of this manuscript. University of Missouri-Columbia Life Science Mission Enhancement program supported Angela R. Kennon and, in part, Xinlu Chen (from Zhanyuan J. Zhang’s lab). All transformation experiments were conducted in the Plant Transformation Core Facility at the University of Missouri-Columbia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanyuan J. Zhang.

Additional information

Communicated by P. Ozias-Akins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vega, J.M., Yu, W., Kennon, A.R. et al. Improvement of Agrobacterium-mediated transformation in Hi-II maize (Zea mays) using standard binary vectors. Plant Cell Rep 27, 297–305 (2008). https://doi.org/10.1007/s00299-007-0463-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-007-0463-z

Keywords

Navigation